В. А. Харитонов (Казань). Динамика микроэлементов в крови при сенисбилизации

Микроэлементы по-видимому, играют известную роль в развитии и течении аллергических дерматозов. Изучение нарушений обмена микроэлементов при аллергических заболеваниях кожи создает предпосылки для поисков новых методов патогенетической терапии.

Мы изучили содержание Cu и Mn в крови морских свинок при химической и биологической сенисбилизации. Исследования проводили на 79 морских свинках. Животных 1-й серии (10) сенсибилизировали втиранием в кожу 1% раствора 2,4-дINITРОХЛОРБЕНЗОЛА (ДНХБ) ежедневно в течение 8 дней; 2-й (24) — пятикратным внутрижожным введением 0,1% раствора ДНХБ по 0,1 мл через 2 дня на третий; 3-й (45) — пятикратным подкожным введением нормальной лошадиной сыворотки по 0,2 мл через каждые 3 дня. Микроэлементы в крови определяли по методике В. М. Лифшиц (1965) на спектрографе ИСП-28. Полученные результаты обработаны по методу вариационной статистики.

У животных 1-й серии до сенисбилизации содержание Cu составляло в среднем 2,79 мг%, а после сенисбилизации — 6,11 мг%, Mn — соответственно 0,14 и 0,18 мг%.

У животных 2-й серии концентрация Cu в крови до сенисбилизации равнялась в среднем 2,79 мг%, а после — 5,86 мг%, Mn — соответственно 0,14 и 0,19 мг%.

У животных 3-й серии до сенисбилизации было в среднем 2,79 мг% Cu в крови, после — 1,79 мг%, Mn — соответственно 0,14 и 0,17 мг%.

ВЫВОДЫ

1. Сенисбилизация ДНХБ сопровождается повышением содержания в крови Cu и Mn.
2. При сенисбилизации лошадиной сывороткой содержание Cu уменьшается, а Mn несколько увеличивается.

ОБЗОР

ПРИМЕНЕНИЕ УЛЬТРАЗВУКА В АКУШЕРСТВЕ И ГИНЕКОЛОГИИ

Канд. мед. наук В. А. Кулавский

Кафедра акушерства и гинекологии (зав. — доктор мед. наук Н. М. Дорофеев) Башкирского медицинского института

В 1958 г. появились первые данные о применении ультразвука для диагностики некоторых гинекологических заболеваний, а также в акушерской практике для установления предлежания, многоплодия, многоводия, пузырного заноса, измерения размеров головки [24, 25, 26, 27, 46, 48, 49].

Тейлор, Холмс, Томсон и др. использовали ультразвук для измерения большого поперечного размера головки. Точность до 3 мм была получена в 95%, до 2 мм — в 80%, до 1 мм — в 57%. У 19 больных с помощью ультразвука диагностировали кистомы, фибромомы, метастазы эндокринных опухолей яичников.

Исследованиями Р. А. Хентова, И. Н. Скору́нского была доказана возможность диагностики многоводия, ожирения, отечности брюшной стенки, низкого прикрепления плаценты. Ультразвуковой метод позволил авторам определить размеры головки плода и малого таза, положение плода, выявить многоплодие, провести дифференциальную диагностику между пузырным заносом и беременностью, опухолью и беременностью, определить размеры интимной конъюнктуры.

Бишов исследовал 600 женщин и подтвердил наличие беременности, выявляя раннее движение плода, определяя частоту и ритм сердцебиения, локализацию плаценты.

Хинелдяман использовал ультразвук для измерения размера головки, интимной конъюнктуры, локализации плаценты. Измерение головки при однократном исследовании удалось у 81,4%, у 8% было невозможно ввиду неблагоприятного вставления головки.

Готтесфельд, Томсон и др. указывают на большую ценность ультразвуковой плацентографии. Из 200 женщин у 95% была точно определена локализация плаценты. Наиболее отчетливые данные получены при расположении плаценты на передней, боковой стенке и в дне матки.

Бернштейн, Каллаган использовали ультразвук для наблюдения за сердцебиением плода с 12—16 недель. Этот способ более достоверен, чем ЭКГ. Самый ранний срок...