СЛАБИТЕЛЬНЫЕ И ПРОТИВОГЕМОРОЭДМАЛЬНЫЕ ЛЕКАРСТВЕННЫЕ СБОРЫ

Е. И. Саканян, Е. Е. Лесновская, Н. В. Сырвежко

Кафедра аптечной технологии лекарств (зав. — проф. Б. Л. Молдаваев), кафедра фармакологии (зав. — проф. Л. В. Патрушенко), кафедра фармакологии (зав. — проф. Г. П. Яковлев)
Санкт-Петербургского химико-фармацевтического института

Целью данной работы являлись изучение номенклатуры существующих слабительных и противогеморроидальных сборов, фармакологическая оценка сырья, входящего в состав сборов, разработка наиболее рациональных по составу слабительных и противогеморроидальных сборов, оптимизация технологии и анализа водных извлечений из них, их фармакологическая оценка.

Разнообразиему фармакологическому изучению подлежали 3 противогеморроидальные сбора и 21 слабительный сбор как официальные, так и неофициальные, но часто упоминающиеся в литературных источниках. Как правило, в состав этих сборов входят одни и те же виды лекарственного сырья — преимущественно растений, содержащие в качестве основной группы биологически активных веществ антагонисты либо эффирные масла. У всех 36 растений, входящих в состав сборов, были изучены наиболее важные фармакологические эффекты: сокогонные, вяжущие, антисептические, спазмолитические, седативные, противовоспалительные, болеутоляющие, антигипоксические и иммуностимулирующие, при этом фиксировалась не только наличие эффекта, но и степень активности. На основании полученных экспериментальных данных, сведений о химическом составе растений и показаний к применению были составлены 15 противогеморроидальных и 10 слабительных сборов. Объектами дальнейших углубленных фитохимических и фармакологических исследований были выбраны следующие сборы: противогеморроидальный № 1 (травы тысячелистника — 2 г, листьев сены — 1 г, корней солодки оцинченной — 1 г, плодов укропа пахучего — 1 г, травы горчицы по-чемуйного — 2 г), слабительный № 1 (коры крушин — 2 г, корневищ аира — 1 г, корневищ с корнями валерианы — 1 г, листьев мяты — 0,5 г).

Для сравнения были взяты официальные сборы: противогеморроидальный № 2 (листьев сены — 1 г, травы тысячелистника — 1 г, коры крушин — 1 г, плодов корнядра — 1 г, корней солодки оцинченной — 1 г), слабительный № 2 (коры крушин — 3 г, листьев крапивы — 2 г, травы тысячелистника — 1 г).

Водные вытяжки из исследованных сборов были приготовлены в режимах постоянной температуры на оцинченной воде комнатной температуре в течение 15 минут с последующим настаиванием в микроволновой печи в течение 25 и 30 минут при 70% мощности печи. Время настаивания сборов далее на пожелание водоры и температуры, составило 3 часа. Во всех случаях в качестве экстрагента использовали оцинченную воду.

Эффективность приготовления вытяжек определяли по содержанию антагонистов и эфирных масел в вытяжках, а также по фармакологической активности.

Количество определение эфирных масел в исследованных сборах проведено методом № 1 ГФ XI. Установлено, что их содержание в лекарственных сборах соответствует требованиям фармакогенетических стандартов ГФ XI.

Для количественного определения антагонистов в водных вытяжках был разработан титриметрический метод. Метод, предложенный ГФ XI, рассчитан на количественное выявление антагонистов в водных вытяжках лишь в исходном сырье в виде агликонов и не позволяет определять содержание антагонистов в водных вытяжках. В основу предложенного нами метода была положена цирометрия с использованием 0,1 М раствора сульфата цинка (ТУ); точку эквивалентности находили потенциометрически. Параметр этих опытов проводили контрольный опыт.

Фармакологическую активность вытяжек оценивали в опытах на 250 белых ненаследственных мышах и 100 крысах самках (всего 18—25 и 150—210 г соответственно). Слабительное действие сборов оценивалось по числу дефекаций [3], противовоспалительное — на модели аденопатических отеков легких с лейкемическим коэффициентом [2], антигипоксическое — на модели нейрогуморальной гипоксии по продолжительности жизни [1].
Таблица 1

<table>
<thead>
<tr>
<th>Водянная вытяжка</th>
<th>Число дефектов</th>
<th>Про должительность жизни</th>
<th>Легочный коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>2,0±0,3</td>
<td>1,2±0,6</td>
<td>8,8±0,2</td>
</tr>
<tr>
<td>Из сбора № 1</td>
<td>7,7±0,3</td>
<td>6,1±0,7</td>
<td>10,7±0,2</td>
</tr>
<tr>
<td>Из официального слабительного сбора</td>
<td>3,8±0,2</td>
<td>0,8±0,2</td>
<td>13,3±0,2</td>
</tr>
<tr>
<td>Из сбора № 2</td>
<td>8,0±0,4</td>
<td>6,4±0,7</td>
<td>9,9±0,2</td>
</tr>
<tr>
<td>Из официального противогеморрOIDального сбора</td>
<td>0,2±0,4</td>
<td>1,6±0,5</td>
<td>12,6±0,3</td>
</tr>
</tbody>
</table>

Таблица 2

| Выход апракциновшводных в вытяжку в зависимости от режима настаивания |
|------------------|---------------------|-------------------|---------------------|
| Выход % | Отвар | Настанивание в термосе | Настановление в микроволновой печи | Кипячение |
| Абсолютный | 2,7±0,04 | 2,9±0,03 | 2,5±0,02 | 3,9±0,01 |
| Относительный | 33,9±0,44 | 35,24±0,36 | 30,8±0,23 | 46,55±0,12 |

2 часа до исследования в дозах 0,2 ml/100 г крысам и 0,02/10 г мышам. Результаты представлены в табл. 1.

Полученные данные свидетельствуют о том, что сборы предлагаемого нами состава по степени слабительного, ангиопротективного и противогеморрOIDального действия значительно превосходят официальные сборы.

Изучение вопросов рациональной технологии водных вытяжек из этих сборов показало, что наибольший выход апракциновшводных в вытяжку достигается при использовании термоса. Результаты представлены в табл. 2.

Далее следует режим приготовления вытяжек в микроволновой печи (35 мин настановивания при 70% мощности) и режим отвара на кипящей водяной бане (30 мин на кипящей бане и 10 мин при комнатной температуре). Кипячение водной вытяжки в течение 20 минут на огне дает максимальный выход, однако фармакологические исследования показали полное отсутствие у этих вытяжек слабительного эффекта и наличие сильного раздражающего действия на брюшину при введении животным, что связано с разрушением антрахламидозов. Из сборов с лиственной сени наиболее рационально готовить настой (согласно ГФ XI) с последующим полным охлаждением при комнатной температуре.

Исследованные сборы содержат эфиромасличное лекарственное растительное сырье, поэтому была изучена и динамика накопления эфирных масел в вытяжках в зависимости от режима и времени наставивания. С помощью программного обеспечения ЭВМ был рассчитан экспериментальный режим приготовления водных вытяжек из сборов, содержащих одновременно антрахламидозы и эфирное масло, требующих совершенно различных режимов приготовлений — 20-минутного наставивания на кипящей водяной бане и 15-минутного — при комнатной температуре. Фармакологическая оценка вытяжек подтверждает правильность выбранных препаратов. Проведена фармакологическая оценка 36 видов лекарственного сырья по основным фармакологическим эффектам, и разработана рецептура 10 слабительных и 15 противогеморрOIDальных сборов с учетом показаний и противопоказаний для применения лекарственного растительного сырья, входящего в их состав. Для приготовления водных вытяжек предложены режимы наставивания в термосе или микроволновой печи, а также отвара в инфузионном аппарате. Режим кипячения не применен.

ЛИТЕРАТУРА

1. Методические рекомендации по экспериментальному изучению препаратов, предлагаемых для клинического изучения в качестве ангиопротективных средств — М., 1989.

2. Руководящие методические материалы по экспериментальному и клиническому изучению новых лекарственных средств. — Фармакол. комитет МЗ СССР.— М., 1986.— Ч. 6.— С. 51—68.

Поступила 16.01.85.

LAXATIVE AND HEMORRHoidal SPECIES

E. I. Sabanjan, E. E. Lesnovskaya

Саммари

The method of cerimetric determination of the content of anthraglycosoids in aqueous extracts is developed. The regime of the preparation of aqueous extracts and species involving ethereal oils and anthracene derivatives is determined experimentally using computer programs.