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Abstract
Aim. To analyze heart rate variability of patients with paroxysmal atrial fibrillation and identify electrophysio­
logical phenotypes of the disease by using methods of exploratory analysis of twenty-four-hour electrocardiographic 
(Holter) recordings.
Methods. 64 electrocardiogram recordings of patients with paroxysmal atrial fibrillation were selected from the 
open Long-Term Atrial Fibrillation Database (repository — PhysioNet). 52 indices of heart rhythm variability were 
calculated for each recording, including new heart rate fragmentation and asymmetry indices proposed in the last 
5 years. Data analysis was carried out with machine learning methods: dimensionality reduction with principal 
component analysis, hierarchical clustering and outlier detection. Feature correlation was checked by the Pearson 
criterion, the selected patient’s subgroups were confirmed by using Mann–Whitney and Student's tests.
Results. For the vast majority of patients with paroxysmal atrial fibrillation, heart rate variability can be described 
by five parameters. Each of these parameters captures a distinct approach in heart rate variability classification: 
dispersion characteristics of interbeat intervals, frequency characteristics of interbeat intervals, measurements 
of heart rate fragmentation, indices based on heart rate asymmetry, mean and median of interbeat intervals. Two 
large phenotypes of the disease were derived based on these parameters: the first phenotype is a vagotonic profile 
with a significant  increase of  linear parasympathetic  indices and paroxysmal atrial fibrillation lasting longer 
than 4.5 hours; the second phenotype — with increased sympathetic indices, low parasympathetic indices and 
paroxysms lasting up to 4.5 hours.
Conclusion. Our findings indicate the potential of nonlinear analysis in the study of heart rate variability and 
demonstrate the feasibility of further integration of nonlinear indices for arrhythmia phenotyping.
Keywords: paroxysmal atrial fibrillation, arrhythmia phenotyping, exploratory data analysis, heart rate variability, 
HRV, Holter monitor.
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Background. Atrial fibrillation (AF) is one of the 
most common rhythm disorders in the population. 
Paroxysmal AF is of considerable interest for car-
diologists since correct drug therapy and interven-
tional treatment methods restore the rhythm for 
a long time, which improves the patient’s quality of 
life and reduces the burden on the healthcare sys-
tem in the country.

At the moment, no consensus was found on the 
mechanisms of initiation, maintenance, and termi-
nation of AF paroxysm. AF was believed as an ar-

rhythmological pathology that can be divided into 
several phenotypes that result from a complex com-
bination of genetic factors, comorbidities, human 
lifestyle, and environmental conditions. The phe-
notypes of AF were previously identified based on 
clinical manifestations [1, 2], genetic characteris-
tics [3], and valve apparatus characteristics [4]. In 
addition, studies highlighted various types of paro-
xysms based on the indexes of rhythm variability 
[5] or the characteristics of the sympathetic nerve 
activities that are located in the skin [6].
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One of the approaches in isolating the di-
sease phenotypes is the use of heart rate variabili-
ty (HRV) indices. Many works are focused on the 
analysis of the characteristics that are often used 
for analysis, such as root mean square of successive 
differences (RMSSD), pNN50, pNN201, and range 
frequency bands [7]. However, over the past few 
years, additional indices of asymmetry and frag-
mentation of the heart rhythm have been proposed 
[8–10]. Their physiological rationale and clinical 
significance nowadays have not been fully studied; 
however, these indices have a significant sensitivity 
to pathology, which has been demonstrated in large 
groups of people [8], and therefore, require clinical 
and physiological interpretation.

Our work determined the phenotypes of AF 
based on the calculated HRV indices on the elec-
trocardiograms (ECG) of daily monitoring. The 
study was conducted on the Long Term AF Data-
base (LTAFDB) open database of electrocardio-
graphic signals [11] using exploratory data analysis 
me thods [12]. Previous works, which use this data-
base, attempt to analyze the HRV to identify epi-
sodes of AF [13]; however, our work performed 
a more detailed study of the HRV characteristics, 
presented an analysis of the relationships between 
heart rate indicators, identified two phenotypes of 
paroxysmal AF, and substantiated statistically their 
existence in the population.

This study aimed to analyze the HRV para-
meters in patients with paroxysmal AF and isolate 
the electrophysiological phenotypes of the disease 
using the methods of exploratory analysis of daily 
ECG monitoring data.

Materials and methods. The LTAFDB database 
consists of 84 ECG records for 24–25 h in length, 
which makes it the most extensive bank with epi-
sodes of paroxysmal AF [11]. Records from LTAFDB 
include signals from two electrodes with a sam-
pling of 128 Hz, which was sufficient for identifying 
the heart rate and calculating the HRV indicators.

Data processing included several stages. First, 
the data of patients with paroxysmal AF were iso-
lated among all the records according to the da-
tabase abstract. Further, for each ECG record, the 
HRV indices were calculated, after which the prin-
cipal component method was applied to reduce the 
number of descriptive signs. The available data in-
cluded records of patients with additional arrhyth-
mological  pathology  that  are  different  from AF, 

thus all outliers were excluded for the analysis in-
tegrity and the principal component method was 
reapplied. Subsequently, the method of hierarchical 
clustering was used to search for the disease pheno-
types. The subgroups of patients with paroxysmal 
AF identified using it were additionally confirmed 
by analysis of variance.

At stage 1, 20 records with a total duration of 
>24 hours of AF paroxysms were excluded from 
the data set. Episodes of sinus rhythm that are avai-
lable for analysis were isolated from the remaining 
records with paroxysmal AF, and ectopic impulses 
were excluded, after which chronograms were con-
structed. The resulting chronograms were processed 
to obtain the following 52 HRV characteristics:

– 14 time­domain  indicators  that  statistically 
characterize the distribution of interpeak intervals 
[7] (RMSSD, MeanNN, SDNN, SDSD, CVNN, 
CVSD, MedianNN, MadNN, MCVNN, IQRNN, 
pNN50, pNN20, TINN, and HTI);

– 9 indices of HRV frequency characteristics 
that are excluded from the analysis of the spec-
tral power density of the chronogram [7] (power 
of ULF, VLF, LF, HF, VHF frequency bands; HFn, 
LFn, LF/HF, and LnHF);

– 7 nonlinear  characteristic  indicators  of  the 
geo metry of the Poincaré graph [7] (SD1, SD2, 
SD1/SD2, S, CSI, CVI, and Modified CSI);

– 16 indicators of heart  rate asymmetry [8, 9] 
(GI, SI, AI, PI, C1d, C1a, SD1d, SD1a, C2d, C2a, 
SD2d, SD2a, SDNNd, SDNNa, Cd, and Ca);

– 4 indexes  of  heart  rate  fragmentation [10] 
(PIP, IALS, PSS, and PAS);

– 2 metrics  of  approximation  of  entropy [7] 
(ApEn and SampEn).

In total, the attribute vector consists of 52 va-
lues. It is noteworthy that the metrics GI, SI, AI, 
PI, PIP, IALS, PSS, and PAS [9, 10] were proposed 
<5 years ago.

Many of the obtained attributes showed a li-
near interdependence, thus the principal component 
method was used to reduce the number of analyzed 
attributes. This performed a linear decreased di-
mensional space and reduce the number of attri-
butes from 52 to 7. This number of components was 
selected following the value of the explained cova-
riance coefficient. The data were first normalized in 
the range before applying the principal component 
method (0.1) and then presented as deviations from 
the mean. This approach differs from the traditio nal 
principal component method, but more effectively 
reduces the dimension of the parameter space [12].

A voting method with four jury algorithms was 
implemented to detect outliers, which includes a ro-
bust covariance matrix estimate, a single-class sup-
port vector machine, an isolation forest, and a local 

1 RMSSD: root mean square value of successive differences; 
NN50 and NN20: the number of pairs of consecutive NNs 
that  differ  by  >50  and  20  ms,  respectively;  pNN50  and 
pNN20: proportion of NN50 and NN20 divided by the total 
number of NNs.
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outlier level [12]. The vectors of the attributes were 
marked as outliers if at least three out of four al-
gorithms “voted for them.” ECG records that cor-
respond to the marked vectors were separately 
analyzed by a cardiologist. Then the linear space 
dimension reduction was repeated for the data 
without outliers, which further reduced the number 
of attributes to 5.

The resulting dataset was analyzed using hierar-
chical linkage clustering according to the Ward test 
[12]. This method of analysis is often used in bio-
informatics to identify disease phenotypes [1]. Ac-
cording to the dendrogram constructed, two groups 
of patient data records are distinguished.

Since the dendrogram serves as an explorato-

ry method of analysis, obtained results were addi-
tionally verified using the analysis of variance and 
data on the duration of pathology that is exclu ded 
from the initial processing. Statistical tests (Stu-
dent’s t­test  and Mann–Whitney–Wilcoxon  test) 
were used for the analysis of each of the 52 HRV 
attributes to test the two-sided hypothesis about the 
inequality of the mean values. The total duration of 
AF paroxysms over the entire duration of the re-
cording was used as information that was not used 
before applying the principal component analysis.

Results. For each of the 64 records, 52 HRV 
indicators were calculated. Some were correla-
ted with each other. Figure 1 presents several large 
groups among all HRV indicators.

Fig. 1. Diagram of the correlation between indices of heart rate variability in patients with paroxysmal atrial fibrillation. The 
color scale indicates the absolute values of the correlation coefficients between the attributes. The proximity of the indices to 
each other is demonstrated using dendrograms on the axes.
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Group 1 of HRV indices strongly correlated ac-
cording to Pearson (0.61 < r < 0.96) that represents 
the characteristics of the variance of the inter-
peak intervals (representatives of RMSSD, SD1, 
SDSD, CVI, and CVNN). The extensive group 
2 of correlated attributes includes the frequency 
characteristics of the chronogram, as well as the 
cardiosympathetic index and entropy indices (rep-
resentatives of CSI, pNN50, LF, HF, SD1/SD2, and 
SampEn; 0.16 < r < 0.97). Group 3 represents indi-
ces of fragmentation of the heart rate (PAS, PSS, 
PIP, and IALS; 0.75 < r < 0.97). Group 4 represents 
signs of asymmetry of the heart rhythm (represen-
tatives of SI, AI, Cd, and Ca; 0.6 < r < 0.99). Group 
5 represents the mean and median values of the se-
quence of peak intervals (MeanNN and Median-
NN; r = 0.97).

The indices and characteristics of signals in-
clude the attributes that are weakly correlated with 
anything, for example, some indicators of the time 
domain that statistically characterize the distribu-
tion of interpeak intervals (MCVNN and HTI), as 
well as an AF time indicator (AFIB Time).

The calculation of HRV indicators and a two-
stage application of the principal component 
method convert 52 HRV characteristics  into five 
parameters (principal components). This five- 
dimensional space was visualized by presenting 
it in projections as seen in Fig. 2. Some vectors 
of HRV characteristics were located at a distance 
from the main data distribution and were consi-
dered outliers.

The four methods listed above were used to 
detect outliers. Only 9 (14%) of 64 vectors were 
marked as outliers based on the voting results of at 

least three outlier detection algorithms. The HRV 
characteristics of these patients were excluded from 
the main data set.

After eliminating the outliers, the data were 
subjected to hierarchical clustering, based on which 
the dendrogram was constructed (Fig. 3). Depen-
ding on the cut­off threshold, 11 to 2 clusters can 
be distinguished. Two clusters were chosen because 
the justification of a more detailed division was im-
possible due to the sample size. The analysis of the 
isolated phenotypes is presented below.

In the extensive literature on HRV, the  RMSSD 
and pNN50 indices serve as the main indicators of 
the used time domain to assess the vagal tone and 
activity of the parasympathetic nervous system [7]. 
Figure 4 presents the RMSSD and pNN50 indices 
in the reduced-dimensional space from a gradi-
ent of values that increases along with two closely 
orien ted directions.

The separability of the two clusters was addi-
tionally confirmed by testing the inequality of the 
mean values of the attributes using the Student’s 
t-test and the Mann–Whitney–Wilcoxon statistical 
test. The p-values of both tests did not exceed 0.01 
for  31 HRV  indices, which  confirmed  the diffe­
rence in the phenotypes of paroxysmal AF. The 
ave rage values of the indices in the data clusters 
and the p­values of their differences are presented 
in  Table 1 for some of the HRV parameters.

As a result of the analysis, all records were clas-
sified into the structure of 2 major phenotypes of 
paroxysmal AF (Table 1). The phenotype 1 indi-
cates vagotonic tendencies in heart rate regulation 
as  confirmed  not  only  by  linear  parasympathe­
tic indicators (pNN50 and RMSSD) but also by 

Fig. 2. Space of  characteristics of heart  rate variability  after  application of  the method of principal  components. The five­ 
dimensional space of the principal components is presented in three-dimensional and two-dimensional projections, respec-
tively. For distribution clarity, the graphs below have a single Y-axis (component 1). Outliers are marked with orange dots.
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Fig. 3. Dendrogram reflects the closeness of heart rate variability parameters in patients. In the captions, the Y­axis represents 
the number of patients in a group, and the X-axis represents the distance between the patient groups. Two clusters of data are 
well traced; they are presumably associated with different phenotypes of atrial fibrillation, which are prominent at the very 
base of the dendrogram.

Fig. 4. Visualization of data after removing the outliers in two projections. The images in the upper panels are based on the 
principal components 0 and 1, whereas those below are based on components 3 and 4. Data related to different phenotypes 
are indicated by rectangles and triangles, respectively. The dotted line in the top panel shows a clear separation of clusters in 
space. The arrows indicate the directions of the gradients along which the increased attributes are noted. The top and bottom 
plots have pairwise common Y axes.
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Table 1. Values of mean and standard deviation of heart rate variability indices for the revealed phenotypes of paroxysmal 
atrial fibrillation

Parameter Phenotype 1 Phenotype 2 Mann–Whitney  
U-test (p-value)

Student’s t-test  
(p-value)

AFIB time, min 399.1±378.4 1202.3±293.8 0.00000 0.00000

pNN50 25.3±13.5 71.9±9.3 0.00000 0.00000

pNN20 46.4±17 87.4±5.6 0.00000 0.00000

ApEn 0.9±0.3 2±0.2 0.00000 0.00000

SampEn 0.4±0.2 1.7±0.3 0.00000 0.00000

CVSD 0.1±0.1 0.3±0.1 0.00000 0.00000

VHF 0.00002±0.00002 0.00017±0.00019 0.00000 0.00011

SD1/SD2 0.3±0.1 0.7±0.1 0.00000 0.00000

CSI 3.4±1.4 1.5±0.4 0.00000 0.00000

HF 0.0001±0.00009 0.00068±0.0006 0.00000 0.00000

LnHF –9.5±0.9 –7.6±0.8 0.00000 0.00000

HFn 0.3±0.1 0.5±0 0.00000 0.00000

RMSSD 114.6±48.9 219.9±77.6 0.00000 0.00000

SDSD 114.6±48.9 219.9±77.6 0.00000 0.00000

SD1 81±34.6 155.5±54.9 0.00000 0.00000

SD1a 55.9±24.2 109.1±38.6 0.00000 0.00000

SD1d 58.6±24.8 110.8±39.1 0.00000 0.00000

LF 0.00008±0.00007 0.00037±0.00028 0.00000 0.00000

CSI Modified 3103.2±1441.9 1454.3±583.2 0.00000 0.00000

PIP 0.7±0 0.7±0 0.00018 0.00033

PAS 0.3±0.1 0.3±0 0.00023 0.00014

MCVNN 0.2±0.1 0.2±0.1 0.00033 0.00921

LFn 0.2±0.1 0.3±0.1 0.00037 0.00379

C1d 0.5±0 0.5±0 0.00037 0.00040

C1a 0.5±0 0.5±0 0.00037 0.00040

PSS 0.9±0 0.9±0 0.00059 0.00352

S 64 099.3±38 559.1 123 348.3±81 939.3 0.00078 0.00072

CVI 5.4±0.3 5.7±0.3 0.00078 0.00039

CVNN 0.2±0.1 0.3±0.1 0.00191 0.00218

IALS 0.7±0 0.7±0 0.00382 0.00634

MedianNN 843.8±146.4 723.6±173.8 0.00505 0.00640

HTI 23±6.9 27±6.6 0.01688 0.03099

MeanNN 840.3±136.2 752.3±180.5 0.01976 0.04070

Cd 0.5±0 0.5±0 0.01976 0.01255

Ca 0.5±0 0.5±0 0.01976 0.01255

SI 49.9±0.1 50±0 0.02579 0.02388

AI 50.1±0.1 50±0 0.06917 0.04510

Note:  31  heart  rate  variability  indicators  have  statistically  significant  differences  (p < 0.01). Below the number 31, the 
significance exceeds the required level in one of the statistical tests.
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the  indices of the frequency characteristics of 
HRV from the analysis of the spectral power den-
sity of the chronogram (LnHF; p < 0.0000001), 
as well as by nonlinear characteristic indicators 
of the geo metry of the Poincaré graph (SD1/SD; 
p < 0.0000001) [7]. The phenotype 2 is characte-
rized by a great sympathetic influence in heart rate 
regulation, which is confirmed by higher sympa-
thetic indices CSI and CSI Modified and lower in-
dices of parasympathetic activation RMSSD and 
pNN50 [7].

Records that belong to phenotype 2 were char-
acterized by a longer duration of registered AF 
paroxysms, which exceeded 4.5 h (AFIB Time in-
dicator in Table 1).

Some patient data were excluded from our ana-
lysis. Three of the four methods for detecting outli-
ers in the data have identified the records of 7 (11%) 
patients. All outlier detection methods identified 2 
patients with significant differences in HRV para­
meters. Figure 2 presents the HRV characteristics 
in these patients that are located at a significant dis-
tance from the general point cloud.

A qualitative analysis of the records from 7 pa-
tients was performed. Unfortunately, the absence 
of signals from 12 standard leads hindered the un-
ambiguous and reasonable diagnoses. However, the 
signals were visually analyzed, taking into account 
the mentions of abnormal rhythms in the data ab-
stracts of these patients in the used database. The 
electrophysiological phenomena can be assumed, 
namely, sinus bradycardia and AF with prolonged 
pauses, Wolff–Parkinson–White syndrome, shor­
tened delay in the atrioventricular junction, left bun-
dle branch block, high respiratory rate or dyspnea, 
ectopic supraventricular tachycardia, extrasy stole, 
electrode dislocation, large areas under T-waves 
that are caused possibly by outflow tract obstruc-
tion of the left ventricle, ventricular ectopia, and 
rigid ectopic rhythm with replacement complexes.

Discussion. HRV has been studied since the in-
vention of electrocardiography by V. Einthoven. 
During this time, many HRV indices have been 
proposed. Some are aimed at identifying speci fic 
diseases, whereas others  identified  the ranges of 
norms in the population, and others have a statisti-
cally significant difference in the values of indices 
in the population, but no proposed explanation of 
the process physiology that determines the index.

The analyses of HRV characteristics in patients 
with paroxysmal AF identified five main groups of 
attributes, namely attributes that characterize the 
statistical HRV characteristics according to the 
chronogram, attributes that characterize the fre-
quency of chronogram characteristics, indices of 
HRV fragmentation, signs of asymmetry in HRV, 

and signs of average HRV characteristics. The in-
tergroup correlation of HRV characteristics is low 
for such groups, whereas the intragroup correlation 
is high (Fig. 1). In this case, any measured charac-
teristics of the rhythm correlate weakly with the to-
tal AF time in the daily ECG recording.

The phenotyping of any disease characterizes 
large groups of patients. However, complex clinical 
cases and rarer arrhythmological types of the pa-
thology were found, which not only complicate the 
data analysis but also significantly affect all HRV 
characteristics.

Our results excluded all such cases from con-
sideration, and then all patients with paroxysmal 
AF can be characterized by only five HRV attri-
butes (one attribute for each category). This finding 
is supported by the explained variance (0.11) when 
applying the principal component method, which 
reduces 52 characteristics to 5 (Fig. 2), as well as 
hierarchical clustering of the columns of the cor-
relation matrix (Fig. 1). Concurrently, nonlinear 
HRV indices (SD1a, C1a, PIP, PAS, and IALS) pro-
vide new information about patient records and are 
not correlated with linear parasympathetic indices 
RMSSD or pNN50. Their significance in the ana­
lysis of AF requires further study.

Hierarchical clustering and dendrograms were 
also used to isolate the disease phenotypes [1]. Fi-
gure 3 presents a hierarchical clustering of HRV 
characteristics. The dendrogram presented repeats 
very closely a part of the dendrogram from work 
[1], which corresponds to the phenotype with low 
comorbidity. Comparison of the list of diseases of 
patients from the original work on the LTFADB 
dataset that was used [11] and patients with a low 
comorbidity phenotype from work [1] confirm the 
revealed similarity. Thus, our phenotyping based 
on HRV characteristics correlates with phenoty-
ping based on clinical signs.

However, in addition to the patients studied in 
our work, patients with atherosclerotic-comorbid 
cluster, tachy-brady/device implantation cluster, 
and behavioral disorder cluster were found. The 
rhythm aspects in such patients remained beyond 
the scope of our analysis since they are not rep-
resented in the LTFADB database. The AF phe-
notypes proposed  in  [2–6] could not be directly 
compared with our results.

The identified AF phenotypes can be explained 
by parasympathetic and sympathetic HRV indices. 
Patients without organic heart disease, as a rule, are 
known to have a parasympathetic pattern of the on-
set of AF (nocturnal and postprandial arrhythmia), 
whereas a sympathetic pattern is more common in 
the presence of structural heart disease. However, 
several experimental studies on the developmen-
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tal analysis of AF in models with heart failure have 
demonstrated the leading role of combined sympa-
thovagal activation in the initiation of arrhythmia 
paroxysm compared with isolated sympathetic or 
parasympathetic influences [14].

Adrenergic stimulation has been demonstrated 
to lead to focal ectopic activity through increased 
automatism, as well as the implementation of ear-
ly and delayed postdepolarizations, whereas va-
gal  influences play a primary role  in shortening 
the action potential of the atrial tissue. In some 
 cases, cholinergic stimulation often becomes the 
major factor in the spontaneous onset of arrhyth-
mia, whereas adrenergic stimulation can only act 
as an electrophysiological modulator that supports 
the development of cholinergic-mediated AF [15].

This study revealed an increase not only in 
heart rate indices but also in the total duration of 
registered AF paroxysms in the group of records 
that describe the predominance of vagotonic in-
fluences (cluster 2) on heart rate regulation. Tak-
ing into account the rather clear phenotyping of the 
paroxysmal form of AF according to the ana lysis of 
HRV parameters and the revealed predictive abil-
ity to predict the duration of AF, it seems prom-
ising  to conduct a study  that  is aimed at fin ding 
the relationships between the electrophysiologi-
cal and clinical characteristics of patients, which 
will more accurately determine the characteristics 
of the subgroup of patients with vagus-dependent 
heart rhythm disorders in the future.

Our work demonstrates that five HRV param-
eters out of five main groups of HRV parameters 
fully characterize the common forms of AF due to 
“inorganic” causes. Among patients with AF, the 
existence of two large electrophysiological pheno-
types of the disease can be distinguished and sta-
tistically  confirmed. The  clusters  revealed were 
believed to also be associated with sympathetic 
and parasympathetic forms of AF. In addition to 
the common linear parasympathetic indices, RMS-
SD and pNN50, indicators of asymmetry of heart 
rate SD1a and C1a, as well as indices of fragmenta-
tion of heart rate PIP, PAS, and IALS, can become 
promising metrics for HRV analysis.

CONCLUSIONS
1. The use of exploratory data analysis of dai-

ly monitoring of the electrocardiogram identified 
two electrophysiological phenotypes of paroxysmal 
AF, namely the profile 1 is a vagotonic profile with 
a significant increased linear parasympathetic indi-
ces with a duration of >4.5 h of AF paroxysm and 
the profile 2 with increased values of sympathetic 
indices, low values of parasympathetic indices, and 
paroxysms of up to 4.5 h long.

2. The obtained data indicate the potential of 
nonlinear analysis in the study of rhythm variabi-
lity and demonstrate the feasibility of further in-
corporation of nonlinear indices for solving the 
problem of phenotyping heart rhythm disorders.
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