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Abstract
Metals have a wide range of effects on biological processes, playing an important role in maintaining the functioning 
of the human body. However, many metals, including essential elements, can have a toxic effect on the body, leading 
to pathological processes. The biological role of an element depends on a number of physicochemical facts, such as 
the oxidation degree and the formation of metal-ligand organic and inorganic complexes. For example, most of the 
iron binds to transferrin and ferritin ensuring the safe transportation of the fenton-active trivalent metal ions in the 
bloodstream. Free Fe3+ ions lead to the formation of reactive oxygen species and further damage of cell structures. 
Thus, the chemical form of the element determines the toxicokinetics and toxicodynamics of metals. Knowledge 
in total exposure of elements in biological fluids is not enough to understand the complex mechanism of biological 
and abnormal reactions. It is necessary to study the interaction of metal elements with various ligands such as high- 
and low-molecular compounds (proteins, polysaccharides, nucleic acids, citrates, amino acids). In this regard, the 
application of modern analytical methods is becoming increasingly important to obtain qualitative and quantitative 
data on elements, ionic forms, speciation and functions in biological systems. The combination of these methods 
is called “speciation analysis”, which is a well-established way to study the biological role and metabolism of trace 
 elements. This article reviews the main metal-ligand forms of iron (transferrin, albumin, ferritin and citrate) and 
zinc (albumin, α2-macroglobulin, IgG, transcuprein, metallothioneins, ZIP and ZnT transporters). This information 
can be useful both in fundamental and applied researches in the biology and medicine.
Keywords: metallomics, elemental analysis, speciation analysis, iron, zinc.

For citation: Notova SV, Kazakova TV, Marshinskaya OV, Shoshina OV. Metal-ligand forms of iron and zinc in the human 
body. Kazan Medical Journal. 2022;103(2):259–268. DOI: 10.17816/KMJ2022-259.

Background
Information about the chemical speciation of ele-
ments is of immense importance for understand-
ing issues in the field of nutrition, biochemistry, 
medicine, and pharmacology [1–3]. The develop-
ment of modern instrumental analytical methods 
enables the performance of a reliable chemical spe-
cies analysis, which makes it possible to determine 
the elementary form and relationships with biolo-
gical ligands [4].

Speciation analysis represents a type of chemi-
cal analysis, the essence of which is determination 
of the qualitative and quantitative content of vari-
ous forms of a chemical element present in the test 
 sample [5]. Metal-ligand analysis offers a distinct 
advantage, since over the past decades, evidence has 
been obtained that determination of the gross con-
centration of an element in a biological sample is not 
sufficient to assess its essentiality or toxicity [6, 7].

This analysis includes a complex of highly sen-
sitive physicochemical analytical methods, which 

include chromatographic, spectroscopic, ioniza-
tion, and diffraction methods [8, 9]. Currently, the 
most attention is paid to so-called hybrid analyti-
cal methods, which provide high selectivity [5]. In 
such methods, as a rule, the preliminary separation 
of components is combined with their subsequent 
detection. In this regard, high-performance liquid 
chromatography followed by mass spectrometry 
with inductively coupled plasma is most common-
ly used. The combination of these methods serves 
as a universal approach to separating the forms 
of chemical elements with an effective method to 
determine ultratrace amounts of a wide range of 
chemical elements [5, 10].

Studies have shown that different compounds of 
the same element can have varying effects, since 
the biological functions of metals depend on se-
veral characteristics [11]. Thus, the valence state, 
isotopic form, and attached ligands affect the func-
tional roles of metals. For example, Cr(III) is essen-
tial, while Cr(VI) is highly toxic and promotes the 
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development of cancer [12–14]. Inorganic forms of 
Se, for example, selenite and selenate, are consi-
dered neurotoxic [15], while the selenoproteins P 
and glutathione peroxidase, by contrast, are neu-
roprotective [16, 17]. The absorption capacity of 
Fe(II) iron is lower than that of Fe (III), but only 
Fe (II) is effective in correcting Fe deficiency in the 
body, which is important when creating nutritional 
supplements [18].

Achievements in the field of analytical chem-
istry have provided proof that metabolic disorders 
can occur not only as a result of a deficiency or ex-
cess of a certain element but also due to the interac-
tion between various metal ions and the pre sence of 
metal-binding (chelating) agents [19, 20]. In stu dies 
conducted by Skalny et al. [21], the metal- ligand 
forms of several elements in the blood serum of pa-
tients with Parkinson’s disease were significant-
ly altered. A significant decrease in the content of 
the Cu/ceruloplasmin complex was noted against 
an increase in the levels of low-molecular-weight 
forms (amino acids) associated with copper. The 
level of Mn-albumin complexes in the subjects was 
more than four times higher than that in the con-
trol group [21].

German scientists analyzed the speciation of se-
lenium in the cerebrospinal fluid of patients with 
Parkinson’s disease, amyotrophic lateral sclerosis, 
and Alzheimer’s disease [22, 23]. The researchers 
showed that the level of neurotoxic forms of sele-
nium did not change in patients with Parkinson’s 
disease, in contrast to those with other neurode-
generative disorders such as amyotrophic lateral 
sclerosis and Alzheimer’s disease. There was a sig-
nificant difference in the ratio of albumin-bound 
selenium and selenomethionine (Se-HSA/Se-Met) 
between patients with Parkinson’s disease and 
those with amyotrophic lateral sclerosis [15]. In the 
future, similar studies may help to establish new 
diagnostic biomarkers with potential utility in cli-
nical practice.

It should be noted that the chemical nature of 
zinc and iron ligands is not completely known, and 
there is also insufficient data on changes in the le-
vels of metal-ligand forms of these elements in 
various diseases. In this regard, the following re-
view compiles the current information on possi-
ble  metal-ligand forms of these metals and their 
 functions.

Metallomics of iron
Iron (Fe) is a vital trace element that serves as a co-
factor of hemoproteins and nonheme-containing 
proteins, including many enzymes [24]. Hemopro-
teins are involved in numerous biological reactions, 
such as oxygen binding and transport (hemoglo-

bin), oxygen metabolism (catalases, peroxidases), 
cellular respiration, and electron transport (cyto-
chromes). Proteins containing nonheme iron are 
important for cellular processes such as deoxyribo-
nucleic acid (DNA) synthesis and cell proliferation 
and differentiation [25].

Impairment of iron homeostasis is associated 
with various diseases. For example, iron deficien-
cy resulting from poor absorption or distribution of 
the metal causes anemia. Excess iron leads to its 
deposition in tissues and becomes the pathophysio-
logical basis of numerous diseases, including can-
cer and a number of neurodegenerative conditions 
[26, 27]. When iron levels are high, free iron(II) is 
formed, which can cause oxidative stress and cell 
death through lipid peroxidation, known as ferro-
ptosis [28].

Oxidative stress is closely related to the  balance 
of the Fe(II)/Fe(III) redox pair. While Fe(III) is 
oxi datively inactive, Fe(II) promotes the forma-
tion of reactive oxygen species by catalyzing the 
decomposition of H2O2 and subsequent formation 
of hydroxyl radicals and peroxidation of membrane 
lipids [29]. In this regard, scientists note that quan-
titative measurements of iron, including the analy-
sis of metal-ligand and ionic forms, rather than its 
gross determination, are keys to a deeper under-
standing of pathological processes [30, 31].

The human body contains approximately 
3–5 g of iron [32], the majority in the hemoglo-
bin of erythroid cells (>2 g) or muscle myoglobin 
(~300 mg) in the form of heme. Macrophages in 
the spleen, liver, and bone marrow contain a tem-
porary fraction of iron (~600 mg), while excess of 
the metal is stored in the liver parenchyma as fer-
ritin (~1000 mg). All other cellular iron-containing 
proteins and enzymes bind a total of approximate-
ly 8 mg of iron [33].

The most common types of iron are Fe (II) and 
Fe (III). The redox potential of iron can vary de-
pending on the attached ligands, for example, ferryl 
(Fe4+) can be temporarily generated as an interme-
diate product in metal-mediated oxidative transfor-
mations [25]. Some of the metal-ligand forms of 
iron are transferrin, albumin, ferritin, and citrate.

1. Transferrin. In the human body, iron metabo-
lism is a strictly regulated process, where iron en-
ters the bloodstream from the intestine in the form 
of a divalent Fe(II) cation, which is easily oxidized 
to the state of Fe(III) and bound by transferrin (80 
kDa) [34]. Plasma transferrin is the most impor-
tant physiological source of iron synthesized in the 
 liver. Together with ferritin, it binds almost all of 
the iron circulating in the plasma. Under physiolo-
gical conditions, this chelation maintains a low 
 level of free iron in the bloodstream to prevent the 
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formation of reactive oxygen species and promotes 
the transport of iron into cells [35].

Iron-bound transferrin distributes iron to oth-
er cells in the body by binding to receptors on cell 
surfaces, which is followed by iron import into 
the cell by means of endocytosis. Once in the cy-
toplasm, iron is delivered to various intracellular 
sites, including mitochondria for heme biosynthe-
sis, and to ferritin, which serves as an intracellu-
lar iron depot [36]. Metabolically inactive iron is 
stored in ferritin and is in equilibrium with ex-
changeable iron bound to carrier molecules [37].

2. Ferritin. Ferritin is a 450 kDa complex that 
binds iron oxyhydroxide particles (up to 4500 
iron  atoms). Most ferritins are located inside cells 
and serve to store iron. The physiological role of 
blood-borne extracellular ferritins is less clearly 
defined [38].

3. Albumin. Human serum albumin, known 
as a low-affinity iron-binding protein, has been 
proposed as a ligand for the pool of nontransfer-
rin-bound iron, which is normally present in pa-
tients with iron excess [39]. Albumin carries a net 
negative charge with a large amount of carboxylic 
acids on the molecule surface, due to which poten-
tial iron-binding sites can form [40, 41].

4. Citrate. Earlier studies of the chemical spe-
ciation of elements in human blood plasma assumed 
the presence of only the trivalent form of iron in 
it and indicated that among the low-mole cular-
weight ligands, iron is present exclusively in the 
form of a hydroxycitrate complex [42]. Howe ver, 
it has now been established that blood plasma and 
serum contain two to six types of low- molecular-
weight iron complexes. Citrate, acetate, pyruvate, 
and phosphates are potential low-mole cular-weight 
metal ligands. Considering the affinity of each li-
gand, scientists have suggested that citrate is the 
dominant ligand of nontransferrin-bound iron [43].

Thus, assessment of the levels of iron comple-
xes with high- and low-molecular-weight ligands 
in vivo is key to a better understanding of the meta-
bolism of this trace element, as well as the various 
pathologies associated with impaired iron meta-
bolism.

Metallomics of zinc
Zinc (Zn) is the second most common and indis-
pensable trace element in a living organism. Re-
searchers have identified more than 3,000 zinc 
proteins that are essential for enzymatic and struc-
tural functions; transport and storage; and the re-
pair, replication, and translation of DNA [44, 45]. 
Six classes of enzymes (oxidoreductases, transfe-
rases, hydrolases, lyses, isomerases, and ligases) 
use zinc as a cofactor [46, 47]. During enzymatic 

processes, zinc plays catalytic, coactive (increa sing 
or decreasing catalytic functions), and structural 
roles (the latter is necessary for the stability of the 
quaternary structure of enzymes) [48, 49]. Scien-
tists suggest that more than 10% of the human ge-
nome encodes zinc proteins [50].

Impairment of zinc homeostasis can cause many 
chronic diseases, such as neurological disorders, 
autoimmune and age-related degenerative diseas-
es, diabetes mellitus, atherosclerosis, and a number 
of malignant neoplasms. It can enhance oxidative 
stress and lead to the formation of inflammatory 
cytokines [51–56].

Currently, zinc deficiency is prevalent, especial-
ly in developing countries. According to a World 
Health Organization report, approximately 2 bil-
lion people worldwide have zinc deficiency, which 
ranks fifth among causes of death and morbidity. 
In industrialized countries, zinc deficiency is most 
common in the elderly population [57].

Due to mechanisms regulating the concentra-
tion of zinc in the body at the sites of zinc absorp-
tion with food (small intestine) and endogenous 
excretion (intestine and kidneys), its toxicity is rare. 
However, zinc loading can interfere with copper 
absorption and cause copper deficiency [58].

Zinc is present in all tissues of the body, but 
its highest concentrations are present in skeletal 
 muscles (60%), bones (30%), liver, and skin (5%), 
with the remaining 2%–3% found in other tissues 
and organs (such as the brain, kidneys, and pan-
creas) [59]. Following absorption by cells, zinc is 
distributed in the cytoplasm (50%), nucleus (up to 
40%), and cell membrane (10%) [60].

Unlike iron and copper, zinc is a redox-neutral 
element and has only one valence state, Zn(II) [61]. 
This is because its filled d-orbital excludes partici-
pation in redox reactions [62]. For this reason, zinc 
is of key importance as a structural, catalytic, and 
signal component.

It is reported that 75%–90% of total plasma 
zinc binds to serum albumin, and this fraction con-
stitutes the majority of the plasma zinc exchange 
pool [63]. Approximately 10% of plasma zinc binds 
tightly to α2-macroglobulin. Less than 1% of to-
tal plasma zinc forms low-molecular-weight com-
plexes with amino acids (histidine and cysteine) 
[64, 65]. Serum zinc accounts for approximately 
0.1%; 80% of it binds freely to albumin and 20% to 
α2-macroglobulin [66].

Absorption and excretion in the gastrointestinal 
tract are effective mechanisms for maintaining zinc 
homeostasis [67]. According to published studies, 
zinc absorption occurs at the highest rate in the je-
junum. Excessive endogenous zinc is excreted from 
the body with the feces [68, 69].



4 of 9

Review

Thus, during zinc deficiency or limited dietary 
intake, zinc excretion decreases, while intestinal 
absorption increases. Conversely, in the presence 
of excess zinc, excretion increases, while absorp-
tion is not affected. As a result, zinc levels in tis-
sues and blood plasma remain stable [70].

Intracellular zinc homeostasis is highly regulat-
ed. Because Zn cannot freely cross cell membranes, 
there are several transmembrane ion carriers. Pro-
teins are the main ligands of zinc(II) ions. There 
are many zinc-binding proteins, such as albumin; 
α2-macroglobulin; haptoglobulin; classes G, M, and 
A immunoglobulins (Ig); complement fraction C4; 
prealbumin; and C-reactive protein [71]. Zinc-bin-
ding proteins can act as zinc storage compounds to 
maintain immunoregulatory and oxidative balance. 
The coordination environment of zinc in proteins 
is limited by oxygen, nitrogen, and sulfur donors 
from the side chains of amino acids (histidine, glu-
tamate, aspartate, and cysteine) [61].

According to the analysis of literature data, the 
following zinc complexes exist.

1. Albumin. Serum albumin is a single-chain 
protein of approximately 66 kDa, which is the main 
protein component of blood plasma, responsible for 
the circulatory transport of a number of molecules 
(fatty acids, hormones, metal ions, and drugs) [63]. 
Albumin has several metal-binding sites that are 
specific to various ions. The authors note that the 
serum level of fatty acids affects metal binding. 
Zinc-binding capacity may be reduced when fatty 
acids are bound to albumin [72]. Studies performed 
on isolated, perfused rat intestines have shown that 
albumin is responsible for the transport of Zn2+ to 
the liver [73]. It was revealed that albumin pro-
motes the incorporation of Zn2+ ions into endothe-
lial cells and erythrocytes [74].

2. α2-Macroglobulin is a protein with a high af-
finity for zinc. Zinc ions are necessary for protein 
activation and binding of α2-macroglobulin to cy-
tokines [75]. Studies of human blood plasma show 
that two identical α2-macroglobulin subunits with 
a molecular weight of approximately 182 kDa as-
sociate via disulfide bonding to form a tetramer-
ic structure [76].

3. IgG binding. According to Yamanaka et al. 
[68], IgG can specifically bind zinc ions through 
the Fc domain. The data obtained demonstrate that 
the γ-globulin molecule contains several zinc-bin-
ding sites [77, 78]. Thus, when interacting with zinc 
ions distributed in the periglobular space, met-
al complexes are formed that acquire new effector 
functions compared to those exhibited by γ-globu-
lins in the native region [79].

4. Transcupreine is a high-affinity copper carri-
er in blood plasma (mass: 250 kDa), participating in 

the initial distribution of copper entering the blood 
from the digestive tract. However, scientists at the 
University of California indicate that zinc can bind 
to this protein [80].

There are other zinc-binding proteins that con-
trol zinc homeostasis.

5. ZIP transporters. Proteins of the ZIP trans-
porter family transfer zinc into the cytosol from the 
extracellular space and intracellular compartments 
[81]. According to published research, the human 
genome encodes 14 types of ZIP transporters. 
Their genes are designated SLC39A1–SLC39A14, 
and they code for ZIP1–ZIP14 proteins, respective-
ly. These transporters are expressed in various tis-
sues and cells (such as the brain, liver, pancreas, 
and kidneys), and their proteins are localized to 
various subcellular compartments (such as the plas-
ma membrane, lysosomes, and mitochondria) [82].

6. Zinc transporters (ZnTs). Another group is 
represented by zinc transporters (ZnTs), which 
transport zinc from the cytosol to the extracellular 
space and intracellular organelles [83]. Scientists 
have identified nine ZnTs, designated ZnT1–ZnT8 
and ZnT10, encoded by the SLC30A1–SLC30A8 
and SLC30A10 genes, respectively [84, 85]. Both 
families of transporters respond to zinc deficien-
cy and excess by enacting specific changes in their 
subcellular localization and protein stability. Dys-
regulation and mutations in transporter genes can 
cause functional disorders [86].

Thus, ZIP transporters increase the level of cy-
toplasmic zinc, while ZnTs decrease it [60, 87].

7. Metallothioneins. In addition to these carriers, 
there are metallothioneins, which are low-molecu-
lar-weight metal-binding proteins (6–7 kDa) with 
a high level of cysteine, which are able to bind cel-
lular zinc through thiol clusters (up to seven zinc at-
oms) [88, 89]. Four classes of metallothioneins are 
known. MT-1 and MT-2 are ubiquitous in the body, 
maintain cellular homeostasis of zinc and copper, 
and chelate heavy metals (cadmium, mercury) in or-
der to reduce cytotoxicity and their intracellular con-
centrations. MT-3 and MT-4 are localized mainly in 
the brain and stratified epithelial tissues [90]. The 
highest concentrations of metallothionein are found 
in the liver, kidneys, intestines, and pancreas [91].

8. Proteins of the S100 family can bind zinc 
ions. The binding of transition metals by S100 pro-
teins was first characterized more than 30 years 
ago [92]. The functions of these proteins are pre-
dominantly regulatory in nature; they are involved 
in several processes, including proliferation, differ-
entiation, and inflammation [93]. Most S100 pro-
teins have a common homodimeric structure, in 
which approximately 10 kDa monomers are assem-
bled to form a compact α-helix [94].
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According to a literature analysis, Zn-bin-
ding proteins include S100A1, S100A2, S100A3, 
S100A4, S100A5, S100A6, S100A7, S100A8/9, 
S100A12, S100A15, S100A16, and S100B [95]. 
The zinc-binding site in proteins S100B, S100A6, 
S100A7, S100A8/A9, S100A12, and S100A15 con-
sists of three histidine residues and one aspar-
tate residue, or four histidine residues, whereas 
S100A2, S100A3, and S100A4 have cysteine-con-
taining zinc-binding sites [94]. The role of such 
binding has not been fully studied; however, it is 
assumed that divalent cations, including not only 
calcium but also zinc, copper, and manganese, af-
fect the oligomerization of S100 proteins and, con-
sequently, their functional ability [96, 97].

9. Zinc complexes with anions. Hydrogen sul-
fide, hydrogen phosphate, and sulfate are the stron-
gest inorganic zinc-binding anions. Diphosphate 
(P2O7

4−), triphosphate (P3O10
5−), and tetraphosphate 

(P4O13
6−), as well as inositol phosphate, bind zinc 

much more efficiently. Acetate (CH3COO−), hydro-
carbonate (HCO3

−), and chloride (Cl−) are ligands 
with an intermediate Zn2+ coordination strength. 
For example, hydrocarbonate is a ligand for the 
zinc enzyme carbonic anhydrase, and chloride has 
been identified as a zinc ligand in the crystal struc-
tures of some zinc proteins [98]. Organic  acids 
(pyruvate, succinate, glutarate, lactate, folate, ox-
aloacetate, and citrate) can also be potential zinc 
ligands [61]. In the cell, all these anions are also 
buffered; there is a controlled balance between the 
free and bound forms.

10. Other complexing compounds. Glutathi-
one (GSH), adenosine triphosphate (ATP), citrate, 
and amino acids are low-molecular-weight zinc li-
gands [99]. Glutathione serves to detoxify xeno-
biotics and heavy metals, restore protein thiols, 
maintain cell membranes, and deactivate free ra-
dicals. Its oxidized dimer (GSSG) controls the con-
tent of  metals in metallothionein [100]. Zinc has 
been reported to form complexes with glutathione: 
Zn(GSH) and Zn(GSH)2 [101]. Moreover, the for-
mation of a ternary complex, Zn (II)-GSH-His, has 
been observed [100].

ATP has been revealed to serve as a zinc ligand. 
Thus, some kinases prefer the ZnATP complex to 
the MgATP complex [99], for example, a bound 
ZnATP complex was found in the crystal struc-
tures of flavokinase and pyridoxalkinase [102].

Zn(His)+ has been established as the preferred 
substrate for membrane transport. Histidine forms 
1:1 and 2:1 complexes with zinc, where the 2:1 
Zn(His)2 complex has no overall charge [103]. The 
Zn(II) ion, which is essential for the stability and 
structure of the zinc finger, is tetrahedrally bound 
by cysteine thiol groups [101].

Another mechanism regulating the intracellular 
zinc concentration is its accumulation in vesicles 
in the form of chelated and labile Zn. For example, 
approximately 20% of zinc is located in the synap-
tic vesicles of glutamatergic neurons in the hippo-
campus and cerebral cortex [104, 105]. In addition 
to the zinc-containing granules and vesicles found 
under normal physiological conditions, zinc also 
accumulates in subcellular compartments under 
certain pathological conditions. When zinc con-
centrations are high, cytosolic vesicles called zin-
cosomes appear [106]. However, at present, these 
formations are poorly studied, and there are no data 
on the chemical speciation of zinc in them. Thus, 
the study of zinc complex formation is of great im-
portance for biochemistry, since various forms of 
this microelement are involved in diverse biologi-
cal processes.

Conclusion
The development of analytical chemistry methods 
has led to the understanding that the total concen-
tration of chemical elements cannot provide com-
plete information about their bioavailability and 
possible toxic effects on ecological systems and 
living organisms. Only knowledge of the chemical 
form of an element can provide information about 
possible chemical and biochemical processes and 
thus lead to a greater understanding of the toxicity 
or essentiality of the element. For this reason, the 
determination of the chemical form of elements is 
of great practical importance.
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