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ABSTRACT

The global prevalence of chronic obstructive pulmonary disease among individuals aged >40 years is approximately 10%.
The disease’s progression, often leading to early disability, underscores its significant medical and social impact. Further
research of risk factors, particularly genetic underpinnings, of chronic obstructive pulmonary disease is essential for developing
effective primary prevention strategies in genetically predisposed individuals. This review aimed to analyze international and
Russian scientific sources on genetic polymorphisms associated with chronic obstructive pulmonary disease and their roles
in disease pathogenesis and examine the pharmacogenetic aspects of therapy, specifically how genetic variation affects
drug efficacy and safety. Full-text articles published between 2000 and 2024 and indexed in PubMed, eLIBRARY.RU, Google
Scholar, and ResearchGate were analyzed. This review summarizes key genetic studies on chronic obstructive pulmonary
disease, including comorbidities and pharmacogenetic characteristics of commonly used drugs. Research on heritable factors
confirmed that genetic susceptibility increases the risk of chronic obstructive pulmonary disease. Several variables influence
therapeutic response, among which genetic factors are critical for guiding treatment choices. Large-scale genome-wide
association studies have identified chronic obstructive pulmonary disease-associated loci that contribute to our understanding
of disease pathogenesis. Polygenic risk scores based on multiple single-nucleotide polymorphisms have demonstrated efficacy
in predicting disease risk and severity and may be useful in predictive medicine. The investigation of genetic polymorphisms
offers promising opportunities for the advancement of personalized approaches to the prediction, prevention, and treatment of
chronic obstructive pulmonary disease.
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HepelwéHHble Bonpocbl XpOHUYECKOM 06CTPYKTUBHOM
60ne3HM NErkKux: NnepcneKTUBbl reHeTUYEeCKUX
uccnepoBaHUU

P.0. Xamutos, ®./. CattapoBa, 3.C. Eroposa

KasaHcKuii rocynapCTBEHHbIN MeANLIMHCKIIA YHUBepCuTeT, T. KasaHb, Poccus

AHHOTALUA

PacnpocTpaHEHHOCTb XPOHUHECKOM 06CTPYKTMBHOM BoMe3HM NErKMX B MUpe cpeay uu ctapiue 40 net coctaensieT okono 10%.
Hapsgy c aTuM HeyknoHHoe nporpeccupoBaHue 3aboneBaHus, NPUBOASLLEE K paHHel UHBaNMaM3aLUuy, onpesenseT BbICOKYH
MeMKO-COLManbHy0 3Ha4MMOCTb 3aboneBaHus. TpebyeTcs fanbHelilee U3ydeHne GaKTOPOB PUCKA, BKIOUas reHeTUYECKUE
0COBEHHOCTU XpPOHUYECKOIN 0BCTPYKTUBHOW 601E3HU NETKMX, C Lenbio pa3paboTkn 3G HeKTUBHOI NepBUYHOI NPOPUNAKTUKM
Ccpeav npeapacnonoXeHHblx nuu. Lenblo Halwero uccnegoBaHns sBuncs 063op 3apybexHon 1 oTeuecTBEHHOW Hay4HO Me-
BVLMHCKOW NUTepaTypbl, NOCBALLEHHON FEHETUYECKMM NOMIMMOPdU3MaM, acCOLMMPOBAHHBIM C XPOHUYECKON 0BCTPYKTUBHOM
BbonesHblo NIErKMX, M UX poiv B NatoreHese 3aboneBaHus, a TakKe aHanu3 GapMaKoreHeTUNECKUX acmeKToB Tepanum — BIK-
SIHWE reHeTUYecKMX nonmMopdu3MoB Ha 3 eKTUBHOCTb U He30MacHOCTb JeKapCTBEHHBIX NpenapaTos. [[poaHanu3npoBaHbl
nosHoTeKcToBble Nybnukaummu 3a nepuog ¢ 2000 no 2024 roa, pasMeLLéHHbIE B 0a3ax AaHHbIX PubMed, eLibrary.Ru, Google
Scholar, ResearchGate. lpeacTaBneH aHanus Hanbonee BaHbIX FEHETUYECKUX UCCNEA0BaHWI XPOHUYECKON 0OCTPYKTUBHOIA
bonesHW NErkux, BKIYas faHHble 0 CoYeTaHMU 3aboneBaHuUs ¢ KOMOPOMAHBIMU COCTOAHMAMM U 0COBEHHOCTAX hapMaKore-
HeTUKM NpenapatoB. VccnefoBaHms, NOCBALLEHHbIE HAcNEACTBEHHBIM (haKkTopaM, ybeanTeNbHO NOATBEPIKAAIOT, UTO FeHeTHYe-
CKast NpeApacmnofioXeHHOCTb CyLLEeCTBEHHO MOBbILIAET PUCK pa3BuUTUsA 3aboneBaHus. Peakums Ha nexkapcTBeHHble npenaparbl
3aBMCHT OT MHOXECTBa (DaKTOPOB, CPeU KOTOPLIX BaXKHYHKO POSib UrPaoT reHeTUHECKWE 0CODEHHOCTM, OnpefensioLLme Boibop
Tepanuu. [TonHoreHoMHbIe UCCNeA0BaHNUSA accoLMaLMii B KPYMHBIX BbIDOPKaX NaLMeHTOB NO3BONSAIOT BbISIBUTb A0CTOBEPHO CBSA-
3aHHble ¢ 3a0011eBaHWEM JIOKYCbI W UrPaAIOT BaXKHYI0 Pofib B YTOUHEHUM naToreHe3a. LLKasbl reHeTUYECKOro pUcKa, CTposLLmMecs
Ha 0CHOBe 06beanHEHUS 3P HEKTOB HECKOMBKMX OAHOHYKEOTMAHBIX NOAMMOP(U3MOB, NOKa3anu CBOK 3P HEKTUBHOCTL B NPO-
THO3WPOBaHMM PUCKA U TSKECTU XPOHUYECKON 0BCTPYKTMBHOI HonesHW NErkux. B aanbHelileM Takve LWKasbl MOryT UMETb Kin-
HWYECKOE 3HAYeHWe B paMKax NPeAUKTUBHOM MeguUMHbI. Vi3yuyeHune reHeTUyeCKuX NoMMop@U3MoB OTKPLIBAET NEPCMEKTUBLI
ANsi pa3paboTKy NepcoHanu3npoBaHHbIX MEAULIMHCKWX MOLXCA0B K NPOrHO3MpOoBaHMIo, NPOdUNAKTUKE U IEYEHNI0 XPOHUYECKOM
0bCTPYKTMBHOM 60N1E3HM NIETKUX.

Kniouesble cnoBa: 0630p; XpoHWYeCKas 06CTPYKTUBHAA 6one3Hb NErKKUX; KOMOPOUAHOCT; FreHeTUYeCcKMe NoaMMopQU3Mbl;
MOJIHOreHOMHbIe UCCefoBaHus; GapMaKoreHeTMKa npenaparos.
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Chronic obstructive pulmonary disease (COPD) is a hetero-
geneous disease characterized by chronic respiratory symp-
toms (dyspnea, cough, and sputum production) and exacer-
bations due to airway (bronchitis and bronchiolitis) and/or
alveolar (emphysema) lesions that cause persistent and of-
ten progressive airflow limitation. Exacerbations and comor-
bid conditions are inherent components of COPD and signifi-
cantly contribute to its clinical presentation [1].

According to studies, the worldwide prevalence of COPD
among people aged >40 years is 12.64%, with the highest in-
cidence in the over-60 population. Aging is considered a cru-
cial risk factor for COPD development [2].

In Russia, 2.4 million people are registered as having
been diagnosed with COPD [3]. However, these data are in-
accurate. According to epidemiological studies of the Russian
Respiratory Society, the actual number of patients is approxi-
mately 11 million, including undiagnosed cases [3].

COPD is a leading cause of respiratory morbidity and
mortality globally [4]. The COPD mortality rate is 42.5 per
100,000 people, ranking third among the causes of death
worldwide. Annually, approximately 3.23 million people die
from COPD [5, 6].

The high prevalence of COPD is due to environmental
degradation, increased prevalence of tobacco smoking and
heating systems, and recurrent respiratory infections [5]. Ex-
posure to harmful particles or gases, such as from active or
passive smoking, environmental pollution, or the use of bio-
mass for cooking and residential heating, has been found to
be an etiological factor of COPD [1].

COPD is frequently accompanied by other pathologies, in-
cluding cardiovascular disease (CVD). CVD is common among
patients with COPD and significantly contributes to overall
morbidity and mortality. COPD is often associated with cor-
onary heart disease (CHD), heart failure (HF), atrial fibrilla-
tion, peripheral vascular disease, pulmonary hypertension,
and stroke [7, 8].

This relationship is explained by the fact that COPD and
CVD have common risk factors, including smoking, poor diet,
age, sex, lack of physical activity, and obesity. The key mech-
anisms linking COPD and CVD are systemic inflammation,
oxidative stress, and endothelial dysfunction [9-12]. Addi-
tionally, obstructive lung dysfunction is a risk factor of car-
diovascular mortality comparable to major cardiovascular
risk factors [6].

The Lung Health Study, which included 5887 smok-
ers aged 35-60 years with moderate bronchial obstruction,
found that a 10% decrease in forced expiratory volume in
the first second (FEV,) was associated with a 14% increase
in total mortality, 28% increase in cardiovascular mortality,
and 20% increase in the risk of CHD [13]. Concomitant CVD
significantly affects quality of life, increases hospitalization
frequency, and worsens survival rates in patients [8, 10].

For an extended period, COPD has been believed to be
predominantly caused by external factors [1]. However, stud-
ies on heritability have demonstrated that genetic factors
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significantly increase the risk of developing this disease.
COPD heritability estimates range from 20% to 40% for air-
flow limitation and up to 60% for smoking-related pheno-
types [14]. Studies employing twin samples have shown that
the heritability of COPD is approximately 60% [15].

The steady progression of COPD, which leads to early
disability, and the high prevalence of working-age individu-
als among patients emphasize the disease’s significant med-
ical and social impact [5]. Further study of the risk factors of
COPD, including genetic features, is required to develop ef-
fective primary prevention strategies for predisposed individ-
uals. Identifying genetic factors may help explain the hetero-
geneity of COPD, assess individual susceptibility, predict the
course of the disease, and develop new, personalized treat-
ment approaches [16].

This review aimed to analyze international and Russian
scientific studies on genetic polymorphisms associated with
COPD and their roles in disease pathogenesis and examine
the pharmacogenetic aspects of therapy, specifically how ge-
netic variation affects drug efficacy.

A data search was performed using PubMed, eLibrary.
Ru, Google Scholar, and ResearchGate between 2000 and
2024. Full-text articles on COPD genetics and the pharma-
cogenetics of drugs used to treat COPD were analyzed. The
keywords used in the search were X0b/1 (COPD), 2eHemu-
Ka (genetics), 2zeHemuyeckuli nonumopgusm (genetic poly-
morphism), genotype, inhaled bronchodilators, f2-agonists,
muscarinic receptor antagonists, inhaled corticosteroids,
and comorbidity.

Initially, studies focused on analyzing a few single-nu-
cleotide polymorphisms (SNPs), which are single-nucleotide
substitutions in the deoxyribonucleic acid (DNA) sequence, in
or near candidate genes that play a role in COPD pathogen-
esis. One particularly important SNP is associated with al-
pha-1-antitrypsin (AAT) deficiency, which may lead to the de-
velopment of COPD symptoms at a young age. Severe AAT
deficiency is the most studied genetic risk factor of COPD and
the only genetic COPD subtype for which a specific treatment
has been developed. The most common cause of severe AAT
deficiency is homozygosity for the SERPINATZ allele, which
results from a single-nucleotide substitution in the SERPI-
NAT gene’s coding sequence. This substitution of one amino
acid changes the AAT protein’s structure [17]. Consequently,
the protein loses its ability to inhibit neutrophil elastase, re-
sulting in the destruction of elastic fibers in the lungs and de-
velopment of emphysema [18].

As technology has advanced, single-gene studies have
been replaced by genome-wide association studies (GWASs),
which determine associations between gene polymorphisms
and traits or diseases at the genome-wide level. The first
GWAS of COPD, which was conducted in 2009, identified a lo-
cus near the CHRNA3/CHRNA5/IREBZ genes and a region
near the HHIP gene [19]. Subsequent, larger-scale studies
identified additional genome regions near the FAMI3A, RIN3,
CYP2Aé, and DSP genes [20].
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Hobbs et al. (2017) conducted a study of 15,256 patients
with COPD and 47,936 healthy individuals from different eth-
nic groups and found 22 loci with genome-wide significance,
13 of which were identified for the first time. However, de-
spite the large sample size, there were not enough non-
European participants to conduct a complete trans-eth-
nic genetic analysis. Newly identified loci included ADGRGé6/
GPR126, THSD4, ADAM19, TETZ2, CFDP1, AGER, ARMC2, RARB,
EEFSEC, DSP, MTCL1, and SFTPD. These genes influence in-
flammation, lung remodeling, oxidative stress, and epitheli-
al dysfunction [21]. In previous GWASs, loci have been iden-
tified in specific genes: HHIP, CHRNA5, HTR4, FAM13A, RIN3,
TGFB2, GSTCD-NPNT, CYP2Aé, and IL27—CCDC101. These
genes play a role in lung development and repair and in pro-
cesses such as proliferation, apoptosis, airway remodeling,
inflammatory responses, antioxidant defense, and nicotine
dependence. The authors used several independent cohorts
to comprehensively analyze genetic susceptibility; however,
some sample sizes remained limited. The NETT study includ-
ed only 389 patients with COPD [19, 22].

New data on the genetic architecture of COPD reveal the
significant genetic component of this disease and indicate the
need for further research. A 2019 large-scale GWAS includ-
ing 35,735 patients with COPD and 222,076 healthy individuals
identified 82 genetic markers [20].

Chen et al. utilized full-transcriptome association stud-
ies—a method that allows for identifying the relationship
between inherited traits and changes in predicted gene ex-
pression levels—to examine 21,617 patients with COPD
and 372,627 controls. They identified a new COPD marker:
the GRK4 gene. This gene is involved in oxidative stress and
inflammatory processes. Therefore, it is a potential target
for personalized COPD therapy and may form the basis for
COPD-targeted therapy [23].

The transient receptor potential (TRP) family is critical in
perceiving external stimuli, such as temperature, chemicals,
and mechanical effects, and in regulating intracellular calci-
um. In patients with COPD, increased TRPA] expression in the
bronchial epithelium is associated with airway hyperrespon-
siveness and chronic cough. Individuals with the rs11988795
polymorphism of this gene have an increased risk of devel-
oping COPD due to an increased oxidative stress response to
cigarette smoke. The TRPV1 gene contributes to neurogenic
inflammation and worsens bronchoconstriction [24].

Activation of the TRPV4 gene causes the breakdown of the
alveolar barrier and increased pulmonary edema. The TRPM8
gene, which is responsible for bronchodilation, is expressed
in airway smooth muscle cells. TRPM8 gene suppression has
been observed in individuals with COPD and may contribute
to obstruction [25]. The TRPMZ2 and TRPM7 genes activate
macrophages and neutrophils, increasing the release of in-
terleukin-8 and tumor necrosis factor alpha. These are key
mediators of inflammation in COPD [25].

Smoking remains the primary cause of COPD [1,5]. As
smoking is an addictive behavior, genetic polymorphisms
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associated with this habit are of particular interest. Fur-
thermore, loci associated with nicotine metabolism have
been linked to an increased risk of COPD. CHRNAS, CYP2A6,
SERPINA1, and MECOM are among these loci that correlate
with COPD and behavioral aspects, such as smoking status
[26]. These genetic variants underscore the complex interplay
between genetic predisposition and environmental influences
in disease development. Among the genetic polymorphisms
associated with COPD and sensitivity to tobacco smoke ex-
posure, the AA genotype of the CHRNA5 polymorphic locus is
particularly notable. This genotype is associated with an in-
creased risk of COPD, smoking status, and lung cancer [27].

Genetic studies on COPD have been conducted worldwide.
Lee et al. (2020) investigated 130 patients with early-stage
COPD and 3478 controls (1700 past smokers and 1778 non-
smokers) in a Korean population. They identified two poly-
morphisms (rs2857210 and rs2621419) in the HLA-DQBZ gene
associated with COPD susceptibility in nonsmokers and ex-
amined the association of SNPs with spirometric data [28].

GWASs have increased the understanding on COPD ge-
netics [19]. The genetic markers identified in these stud-
ies are used to create genetic risk scales that account for
the polygenic contribution to different COPD phenotypes. Ac-
cording to modern concepts, a phenotype is not primarily in-
fluenced by single rare variants with large effect sizes, but
by the aggregate of many common variants with small ef-
fects [29]. The Framingham Heart Study demonstrated that
a polygenic risk assessment for COPD enables the more ac-
curate detection of undiagnosed cases of the disease [30].
Consequently, polygenic COPD risk assessment facilitates an
earlier diagnosis of COPD and maintains its prognostic value
even when known risk factors characteristic of early life are
considered [31].

COPD is a disease with sex-based differences in suscepti-
bility and clinical manifestations. Men are known to be affect-
ed more frequently [1]. This is primarily due to smoking. How-
ever, recently, the number of female smokers has increased,
as evidenced by the increasing prevalence of COPD among
women. According to research, female patients exhibit a more
pronounced clinical presentation of the disease, often accom-
panied by associated conditions such as anxiety, depression,
cachexia, and osteoporosis. In addition, the study revealed sex
differences in airway wall structure. In women, the airway lu-
men was anatomically narrower, and the walls were thicker.
These differences may be related to genetic features [32].

Furthermore, Joo and Himes (2022) conducted a sex-dis-
aggregated GWAS that included 12,958 men and 11,311 wom-
en with COPD. The control group consisted of 95,631 males
and 123,714 females. As in most previous studies, the par-
ticipants were predominantly from European populations.
The researchers identified sex-linked loci, eight of which
were specific to males and five to females. The C5o0rf56 lo-
cus was strongly associated with COPD in men, but not in
women. C5orf56 is a long noncoding gene called /RFT-AST.
The neighboring IRFT gene encodes interferon regulatory
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factor 1, which is responsible for the antiviral response of the
airway epithelium. As viruses can exacerbate COPD, this lo-
cus may influence susceptibility to the disease by altering the
body’s response to viral exposure. However, the mechanisms
through which the ARHGEF3, Clorf87, and C100rf1 loci influ-
ence COPD in men remain unclear. Additional male-specif-
ic associations were identified at the CFDP1, TMEM170A, and
CHSTé loci, which are linked to CHD and COPD [33]. Further-
more, the study identified COPD risk loci among women in the
ASTNZ and TRIM32 regions at the 9933.1 and in the 16922.1
locus and in several associated genes [33].

Similarly, Hardin et al. identified sex-dependent genet-
ic risk factors of COPD. One such factor is the CELSRT gene,
which is associated with an increased risk of COPD in wom-
en. This finding indicates the importance of considering sex
differences in genetic studies and treatment approaches [34].

CHRONIC OBSTRUCTIVE PULMONARY
DISEASE AND PULMONARY FIBROSIS

In addition to increasing susceptibility to COPD, some genet-
ic loci may induce protective effects against other diseas-
es. The genotype of the FAM13A polymorphic locus, which
is associated with an increased risk of COPD, is also asso-
ciated with a decreased risk of pulmonary fibrosis. Howev-
er, some studies have found inverse relationships. Xu et al.
(2017) reported that polymorphisms in the MMP-9 (C-1562T)
and TGF-B1 (T869C) genes are present in patients with COPD
accompanied by severe emphysema in the upper lobes of
the lungs. Moreover, these polymorphisms are associated
with an increased risk of pulmonary fibrosis. These genes
play a role in inflammatory processes, alveolar tissue deg-
radation, and airway remodeling. However, this study had
two limitations. First, the sample size was small, consisting
of only 82 patients with COPD. Second, the study population
was limited to the Chinese ethnicity [35]. In a study by Wain
et al., (2017) the ZGPAT and RTEL] genes that play roles in
the development of familial pulmonary fibrosis, were iden-
tified [36]. These findings underscore the complexity of ge-
netic relationships among different respiratory diseases.

CHRONIC OBSTRUCTIVE PULMONARY
DISEASE AND EMPHYSEMA

COPD is commonly accompanied by emphysema. Chest X-ray
is used to assess the presence, severity, and distribution of
emphysema. Areas with a density below -950 HU correspond
to emphysema [37].

In the Multi-Ethnic Study of Atherosclerosis, Manichaikul
et al. (2014) found a significant association between the SN-
RPF and PPT2 loci and the risk of developing emphysema in
a sample of 7914 people, reaching genome-wide significance
levels [38].

Additionally, Scho et al. (2015) identified five genetic poly-
morphisms correlating with emphysema severity in over
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12,000 patients of European and African—American descent in
the COPDGene, ECLIPSE, GenKOLS, and NETT studies. These
included two previously identified loci for COPD (polymor-
phisms of the HHIP and CHRNA3 genes) and three new loci
near the SOWAHB, TRAPPCY, and KIAA1462 genes. Howev-
er, the study included patients with COPD and smokers with-
out COPD, which could obscure specific genetic effects [39].

CHRONIC OBSTRUCTIVE PULMONARY
DISEASE AND CARDIOVASCULAR DISEASE

As previously mentioned, COPD is often associated with CVD
[7,8]. In a study involving 12,550 patients with COPD and
46,368 controls, Zhu et al. (2019) found 7 loci significant-
ly associated with COPD and CHD: CD3EAP, C190rf83, GIPR,
FBX046, AC074212.3, SIX5, and DMPK and BCAR]. These
genes influence disease development through systemic in-
flammation and oxidative stress, leading to airway remodel-
ing and cell apoptosis. Because arterial hypertension is high-
ly prevalent, the study investigated its association with COPD
and identified 22 loci. The most significant of these was lo-
cated near the ARHGAP42 gene (rs633185). The genetic poly-
morphism rs7655625, which is associated with heart rate and
arterial hypertension, should be emphasized. However, the
findings require cautious interpretation owing to several lim-
itations. The study was exclusively conducted on the Europe-
an population, which complicates the generalizability of the
results to other ethnic groups. Additionally, risk factors such
as smoking, occupational hazards, and CVD phenotypes were
excluded in the analysis [40].

The relationship between COPD and HF is currently be-
ing actively studied. Axson et al. conducted a retrospec-
tive cohort study involving over 86,000 patients in the Brit-
ish population and proved the negative impact of HF on COPD.
However, the study had several limitations, including a short
follow-up period after the start of therapy, lacking data on
cardiac function parameters (e.g., ejection fraction), and in-
complete information on treatment regimen compliance and
drug dosages [41]. In a 2014 meta-analysis, Glider and Rut-
ten confirmed an increased prevalence of HF among pa-
tients with COPD, emphasizing the critical role of system-
ic inflammation. The activation of the neurohumoral system
along with systemic inflammation in patients with HF wors-
ens COPD progression [42].

The aforementioned studies have prompted a debate
on whether there is a causal relationship between COPD
and HF. Jiang et al. (2024) conducted a Mendelian random-
ization study using data from two large genomic databas-
es: the UK Biobank, which included COPD data from 423,796
participants of European descent, and the FinnGen consor-
tium, which comprised 6033 HF cases and 123,000 con-
trols. They demonstrated that COPD significantly increases
the risk of developing HF. However, the study did not include
data on the increased risk of COPD development in patients
with HF [43].
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The identified loci influence COPD development and pro-
gression by affecting the pathogenetic level and causing sys-
temic inflammation and oxidative stress, which lead to air-
way remodeling.

In the future, detected gene polymorphisms may be use-
ful in calculating the risk of COPD development in persons
with CVD and in predicting the probability of heart disease
development in those with COPD.

Despite their significant contributions to the study of
the genetic architecture of complex diseases, GWASs have
several limitations. First, approximately 80% of the studies
were conducted in European populations, which limits the
extrapolation of findings to other ethnic groups. Second, al-
though the statistical significance threshold (p < 5x 10-8) is
required to control for multiple comparisons, it may result in
the omission of weak but biologically significant genetic sig-
nals [44].

Interpreting the results is challenging because most
of the identified associated SNPs are in noncoding regions
of the genome. This indicates that their pathogenic effect may
be realized through the regulation of the expression of oth-
er genes. The mechanisms of this regulation should be fur-
ther studied [44]. In addition, repeated studies in independent
population cohorts are crucial to confirm and verify the find-
ings. This is particularly important for establishing universal
genetic markers of diseases and understanding population-
specific genetic effects.

PERSPECTIVES ON MULTI-OMIC
RESEARCH OF CHRONIC OBSTRUCTIVE
PULMONARY DISEASE: FROM
PATHOGENESIS TO PERSONALIZED
THERAPY

Integrating multi-omic data from genomic, epigenomic, pro-
teomic, metabolomic, and microbiomic approaches is crucial
for identifying reliable COPD biomarkers. Such approach al-
lows for the investigation of the disease’s molecular mech-
anisms [45]. Epigenetic changes, such as DNA methylation,
play a pivotal role in COPD pathogenesis, reflecting the com-
bined effects of environmental factors (e.g., smoking and air
pollution) and genetic predisposition [46]. Patients exhibit
significant changes in methylation patterns that affect genes
associated with inflammation (e.g., TNF and /L-6), antioxidant
defense (e.g., GSTPI), and tissue remodeling (e.g., MMP9)
[47]. These epigenetic modifications contribute to COPD het-
erogeneity, initiating individual susceptibility to the disease,
modulating inflammatory processes, and influencing re-
sponse to therapy. This provides new opportunities for per-
sonalized treatment [48].

Analyzing microRNAs that regulate gene expression in
COPD is an important research area. For example, miR-106b-
5p in peripheral leukocytes may be a biomarker of disease
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severity [49]. Proteomic studies have made significant con-
tributions by detecting marker proteins, such as alpha-1-ac-
id glycoprotein, peroxiredoxin-2, and cadherin-5. Evaluating
these proteins is superior to traditional methods for the early
diagnosis of COPD [50]. Furthermore, respiratory microbiome
dyshiosis contributes to chronic inflammation, impaired im-
munity, and increased susceptibility to infection [51, 52]. Me-
tabolites of microbial origin, such as butyrate, homocysteine,
and palmitate, are closely related to host genes associated
with COPD [53].

Integrating multi-omic data at all stages of COPD is an ef-
fective way to identify new biomarkers and therapeutic tar-
gets [45]. Large-scale studies, including the profiling of the
disease’s early stages, are crucial for improving our under-
standing of COPD pathogenesis and developing new diagnos-
tic and therapeutic strategies aimed at modifying the course
of the disease.

PHARMACOGENETICS OF CHRONIC
OBSTRUCTIVE PULMONARY DISEASE

Pharmacogenetics, a subspecialty of medical genetics, is the
study of the role of genetic factors in the formation of phar-
macological responses of the human body to drugs. The term
was first proposed by German scientist F. Vogel in 1958.

Various factors determine the response to medications,
including the patient’s genetic characteristics. Inhaled bron-
chodilators are crucial in the treatment of chronic obstruc-
tive airway diseases, including bronchial asthma and COPD.
However, the efficacy of treatment with these medications
varies among patients, largely because of the influence of
polymorphic loci on the individual response to bronchodila-
tors [94, 55].

Beta-2 agonists are one of the most widely used drug
groups for treating COPD. Individuals may respond different-
ly to this therapy. Its efficacy depends on the initial degree
of airway obstruction and the patient’s age and smoking sta-
tus [56]. Changes in the amino acid sequence of beta-2 ad-
renoreceptors, caused by SNPs, have an equally significant
impact on their function. These changes lead to significant
conformational and structural rearrangements that direct-
ly affect receptor function. Moreover, genetic polymorphisms
may cause changes in the expression of genes that regulate
beta-2 agonist target receptor function, which further ex-
plains variability in response to treatment [54-59].

Although pulmonologists strive to minimize the use of
short-acting beta-agonists (SABAs) in favor of long-acting
beta-agonists (LABAs), SABAs remain crucial owing to their
prevalence in clinical practice. Thus, their pharmacogenet-
ics continues to be studied. KCNJ2 (rs2367245) and KCNK1
(rs7552783) polymorphisms have been found to be associat-
ed with an effective response to SABAs [54].

The ADRBZ2 gene, which encodes the beta-2 adrenergic
receptor, is critical in the study of bronchodilator responses.
This gene comprises three functional SNPs: Gly16Arg (G46A,
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rs1042713), GIn27Glu (C79G, rs1042714), and Thriéslle (CA9T,
rs1800888). The presence of the Arg16 allele is associated
with decreased response to SABAs in patients with COPD. In-
dividuals homozygous for Arg16 polymorphism exhibit an ab-
sence of bronchodilator effect from SABAs five times more
frequently than those with the Gly1é allele, and heterozy-
gotes exhibit this absence twice as often [57].

Several studies have found that the Thri1é4lle polymor-
phism of the ADRBZ gene may increase the risk of exacer-
bations in patients with bronchial asthma undergoing LABA
therapy [58]. These exacerbations may lead to life-threaten-
ing conditions, indicating the importance of an individualized
treatment approach for this patient population.

In Russian pharmacogenetic studies, COPD patients with
the Arg16 and GIn27 alleles of the ADRBZ gene demonstrated
negative spirometry index dynamics, namely, decreased FEV,
and forced vital capacity, despite formoterol and budesonide
therapy. In contrast, positive dynamics in spirometry param-
eters were observed in individuals with the Gly16 and Glu27
alleles [59].

In a study involving 389 patients with severe COPD, Kim
et al. (2009) revealed an association between the response
to bronchodilator administration and SNPs in the EPHXT,
SERPINEZ, and ADRBZ genes among six candidate genes and
found that the rs1009668 SNP in the EPHXT gene was signifi-
cantly associated with a poor response to bronchodilators [60].

A meta-analysis by Hardin et al. (2015) of 5789 COPD pa-
tients showed associations between responses to bronchodi-
lators and SNPs in the KCNJ2, CDH13, and GOLGA8B genes.
However, the results did not reach full genomic significance.

These findings emphasize the complex genetic landscape
that affects response to bronchodilators in patients with
COPD.

No other loci responsible for the expression of genes that
regulate beta-2 agonist receptor function have been identi-
fied in ongoing pharmacogenetic studies of COPD.

Kehinde et al. (2023) described the role of CYP2Dé gene
polymorphisms in drug metabolism, including that of drugs
used to treat COPD. Beta-2 agonists are partially metabo-
lized by the CYP2Dé enzyme, which may affect their degra-
dation rate and consequently decrease the efficacy of thera-
py. Decreased metabolism may lead to drug accumulation in
the blood, increasing the risk of side effects. Although the-
ophylline is poorly metabolized by CYP2Dé, its toxicity de-
pend on enzyme activity. Consequently, standard doses of
theophylline may not be optimal for individuals with rare CY-
P2D6 gene variants. It may be critical to adjust the dosage to
minimize toxicity [61].

Contrary to initial assumptions, the results of candidate
gene studies have been inconsistent and have not been con-
firmed by subsequent GWASs.

Anticholinergic drugs play a key role among bronchodila-
tors used to treat COPD. The muscarinic acetylcholine recep-
tor M3, encoded by the CHRM3 gene (rs6688537), is of par-
ticular interest. This receptor is a well-studied drug target,
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and many approved drugs have been developed for its use in
treating asthma and COPD [36].

Inhaled glucocorticoids (IGCs) are often prescribed for
COPD; however, their efficacy and the risk of adverse effects
may vary depending on genetic factors. The 2019 Lung Health
Study found that rs111720447 polymorphism was associated
with changes in the rate of decrease in FEV, in patients re-
ceiving IGCs. Patients who were carriers of allele C of this ge-
netic polymorphism and received IGCs showed an increase in
FEV, of 56.4 mL per year. However, in the placebo group, pa-
tients with the same allele showed a 27.6 mL decrease in FEV,
per year. Patients with allele A of polymorphism rs 111720447
who received IGCs experienced a greater decrease in FEV,
than those who received a placebo. ENCODE data revealed
that the rs111720447 variant is located near the glucocorti-
coid receptor-binding sites in A549 alveolar cells. Although
this variant does not affect gene expression, its position in-
dicates a potential structural impact on the glucocorticoid re-
ceptor complex [62].

Additionally, an association was found between the
rs4713916 polymorphism of the FKBP5 gene and various indi-
ces of response to IGCs in patients with COPD. Specifically, GA
genotype carriers demonstrated improvements in the 6-min
walk test and lung function indices following IGC therapy
[63]. This group exhibited higher cognitive function and qual-
ity of life indices throughout the study. Furthermore, a low
predisposition to depression and anxiety was observed [64].

Notably, some gene polymorphisms cause drug insen-
sitivity. One example is the FKBP5 gene, which encodes
the FK506-binding protein 5. The expression of this gene is
regulated by rs2766545 polymorphism. This polymorphic lo-
cus is associated with glucocorticoid resistance. However,
this study’s sample size was small (71 patients with COPD),
there was no control group, and the drug’s efficacy was eval-
uated only after 3 weeks of therapy [63].

Moreover, Lei et al. (2017) conducted a study of a Chinese
population, which included 204 patients with COPD. They ex-
amined the association between the GLCCIT gene rs37973
polymorphism and the response to ICSs (the patients re-
ceived combined fluticasone propionate and salmeter-
ol at a dose of 500/50 g twice daily for 24 weeks). In vitro,
neutrophils isolated from patient tissues were incubated with
different concentrations of dexamethasone, with or without
cigarette smoke extract. Subsequently, apoptosis was as-
sessed. After 24 weeks of treatment, patients with the GG
genotype exhibited a significantly smaller improvement
in FEV, (15.3 £ 33.2 mL increase) than those with the AA
(92.7 + 29.6 mL; p < 0.001) or AG (594 + 26.9 mL; p < 0.001)
genotypes. In vitro, dexamethasone had a weaker inhibitory
effect on the apoptosis of neutrophils with the GG genotype,
further confirming that the presence of the G allele may neg-
atively affect glucocorticoid sensitivity, regardless of smok-
ing status. Therefore, the GG genotype of the rs37973 poly-
morphism may be associated with decreased IGC efficacy in
Chinese patients with COPD [65].
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According to the clinical guidelines for COPD, theophylline
may be used as adjunctive therapy for patients with severe
COPD. Xiong and Li (2018) identified variants of the CYP1A2
gene that may alter enzyme activity and directly affect the-
ophylline metabolism in 120 Chinese patients with bronchi-
al asthma or COPD. In a study that focused on CYPIAZ gene
polymorphisms, patients with bronchial asthma or COPD who
carried specific alleles demonstrated significantly decreased
theophylline clearance [66].

The use of genetically engineered biological therapy in
patients with COPD is being actively studied [67]. In recent
years, T2 inflammation, which is associated with bronchial
asthma and detected in a significant proportion of COPD pa-
tients, has gained attention in the study of disease pathogen-
esis [68]. Furthermore, eosinophilia is observed in patients
with COPD and is associated with a more severe disease
course and increased risk of exacerbations [68]. However,
some studies showed no difference in COPD progression [67].

Rabe et al. (2024) conducted a study on the effects of ite-
pekimab in patients with COPD and found no genetic associa-
tions responsible for the response to treatment [69].
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