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ABSTRACT

This article explores the pathophysiological mechanisms and therapeutic potential for treating bronchial asthma, a significant
global public health issue. Immune-mediated inflammation is central to asthma pathogenesis and involves the formation of
inflammasomes—molecular complexes that regulate inflammatory responses. The NLRP3 inflammasome plays a pivotal
role in disease progression by interacting with allergens and triggering signaling cascades that lead to the production of pro-
inflammatory cytokines, such as interleukin-1p (IL-1B) and IL-18. These cytokines recruit immune cells, including mast cells,
eosinophils, and T lymphocytes, which contribute to airway inflammation, hyperresponsiveness, and bronchial obstruction. The
article discusses asthma phenotypes, including infection-induced and atopic asthma, and the link between NLRP3 inflamma-
some activation and impaired lung function, steroid resistance, and neutrophilic inflammation. Special attention is given to the
cellular and molecular pathways involved in the inflammatory response, including interactions between the inflammasome
and T helper cells, macrophages, eosinophils, and mast cells. These interactions lead to the release of histamine, heparin,
lysosomal enzymes, reactive oxygen species, nitric oxide, prostaglandins, and leukotrienes. Inflammatory mediators such as
IL-4, IL-5, and IL-13 contribute to airway remodeling, mucus hypersecretion, and bronchospasm. Additionally, inflammasome
activation can impair epithelial barrier integrity, further exacerbating allergic inflammation. The article emphasizes the chronic
changes in the bronchial tree caused by sustained inflammation and highlights the importance of regulating inflammasome
activity. In particular, the selective NLRP3 inflammasome inhibitor MCC950 has demonstrated efficacy in reducing inflammation
and shows promise as a novel therapeutic approach. The article concludes that integrating inflammasome research into clinical
practice (particularly through the use of targeted therapies such as MCC950) may transform the approach to asthma treatment.
This underscores the importance of transitioning toward personalized medicine in the management of chronic inflammatory
diseases such as bronchial asthma.
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Ponb undpnammacombl NLRP3 B natoreHese
6poHXHaNbHOU acTMbl: MeXaHM3Mbl BOCNaNEHUA
U HOBble NMepcneKTUBbI Tepanuu

N.X. bopykaeBa, K.I. 3gunos, A.C. [13yeBa, M.W. JlabasaHoga, X.-A.P. [ngu3os

KabapauHo-bankapckuit rocynapcteHHbIii yHuBepcuteT uM. X.M. BepbekoBa, r. Hanbumk, Poccus

AHHOTALMA

CraTbal nocBsiLLeHa NaTopU3noIorMyeckM MexaHu3MaM U1 TepaneBTUHECKOMY NoTeHUMany B jiedeHn bBpoHXWanbLHON acTMbl,
KoTopas npeacTaenseT coboii rmobanbHyto npobneMy 3npaBooxpaHeHus. B ocHoBe natoreHe3a HpOHXMaNbHOW acTMbl NEXUT
MMMyHHOe BocriajieH1e ¢ 06pa3oBaHMeM MH(NAMMaCcoM, MOJIEKYNSPHBIX KOMIIEKCOB, PErYMPYIOLLMX BOCNANMTENbHbIE peaK-
unn. NHdnammacomel, ocobeHHo NLRP3, urpatot KntoueByto posb B pa3BuTUmM 3abonieBaHuns, B3aUMOAEICTBYA C annepreHaMm
W MHULMMPYS CUrHaNbHbIE KacKafbl, KOTOpbIE MPUBOAAT K BbIPaboTKe NpOBOCMAUTENBHBIX LIMTOKMHOB, TaKUX KaK MHTEPNENKUH-
1B (IL-1P) v IL-18. 3TV LUTOKUHBI MPUBNEKAIOT UMMYHHbIE KNETKU, BKJIKOYAsA TYYHbIE KIETKM, 303MHOGUALI U T-NnUMbOLMTLI, KO-
TOpble CNOCOBCTBYIOT BOCMIANEHUIO bIXaTeNbHbIX MyTel, rMneppeakTMBHOCTM U 06CTpYKUMM BpoHXOB. PaccMoTpeHb! GeHoTUMbI
BpoHXManbHON acTMbl, BK/oUas MHPEKLMOHHO-3aBUCHMYIO M aTOMMYECKYIO acTMy, a TaKKe CBAA3b aKTUBaLMW MHGIaMMacoMbl
NLRP3 ¢ HapyLueHMAMM NIEFOYHON BYHKLMKM, CTEPOMAOPE3UCTEHTHOCTBLIO U HENTPOGMILHBIM BocnaneHneM. Ocoboe BHUMaHue
YAENEHO KNETOYHbIM U MOJTEKYNSPHBIM MeXaH13MaM, 3a[1eMCTBOBaHHLIM B POPMMPOBaHUM BOCMANITENBHOO NpOLiecca, BK0-
yas B3aMMOZLENCTBUE MHPNAMMacoMbl ¢ T-xennepamu, MaKpodaramu, 303uHOGUNEaMN Y TYYHBIMU KNETKaMu, NpUBOASALLEE
K BbILLENEHUI0 TMCTAaMUHA, renapyHa, IM30CoManbHbIX GepMeHTOB, CBOBOAHBIX paJMKanoB KUCNOPOAA, NepoKcUaa a3oTa, npo-
CTarnaHAVHOB M fIeNKoTpUeHoB. Meaumatopbl BocnaneHus, Takue Kak IL-4, IL-5, IL-13, Bbi3biBaloT peMofienMpoBaHue gbixatesib-
HbIX MyTel, rUnepceKpeumio cnmsn u 6poHxocnasM. Kpome Toro, akTuBauus MHGIaMMacoM MOXET NPUBECTU K HapyLLEHUIO
bapbepHon hYHKUMK 3nuTeNus, YTo ewwe bonee ycunuBaeT ansepriyeckoe BocnaneHue. B paboTe akueHTMpyeTcs BHUMaHWe
Ha XPOHUYECKUX U3MEHEHUAX B OPOHXMANbHOM [lepeBe, BbI3BaHHbIX [IUTENbHBIM BocnaneHueM. [lof4épKuBaeTcs BaXHOCTb
perynsaumum uHhIamMMacoM, BKK0Yas UCMob30BaHKe CENEKTUBHOIO MHrMbuTtopa nHdnammacombl NLRP3 — MCC950, Kotopein
3 deKTUBHO CHUKaET BOCManeHue, AeMOHCTPUPYS NEePCreKTUBLI iedeHUs BpoHxManbHoM acTMbl. B cTaTbe fenaeTcs BbIBOA
0 BaXKHOCTM MHTErpaLmuu UCCnef0BaHU MH(GNAMMacoM B KITMHUYECKYH0 MPaKTUKY, MPeAonaras, 4To TapreTHas Tepanus (B Buae
ucnonb3oBaHua MCC950) MoxkeT npeobpa3oBaTh NOAX0A K IEYEHMIO aCTMbI. 3T0 NOAYEPKUBAET BaXKHOCTL NepPexofa K nepcoHa-
JM3UPOBAHHON MeJMLMHE B JIEYEHUN XPOHUHECKUX BOCTIANTENbHBIX 3aD0/1EBaHMIA, TaKMX KaK BpoHXManbHas acTMa.

KnioueBble cnoBa: 6poHxuanbHas acTMa; MHpaMMacoMa; NpoBOCMANUTENbHbIE MHTEPNENKUHBI; BOCMIANUTENbHBIA NPOLECC;
UHrMbuTopbl MHpnamMmacoMbl NLRP3; 0630p.
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BACKGROUND

Bronchial asthma currently poses a significant public health
challenge, as the number of individuals affected by this dis-
ease continues to increase annually [1]. According to the
World Health Organization, approximately 340 million people
worldwide are presently diagnosed with bronchial asthma,
and this number is steadily rising [2]. The high prevalence of
bronchial asthma is linked to multiple contributing factors,
including air pollution, urbanization, and changes in the hu-
man microbiome [3]. As a global health issue, bronchial asth-
ma demands comprehensive strategies focused on preven-
tion, early diagnosis, and access to high-quality treatment
[4]. Given that immune-mediated inflammation plays a cen-
tral role in the pathogenesis of atopic asthma [5], understand-
ing the mechanisms underlying the inflammatory process is
of critical importance.

This review aims to examine the role of the NLRP3 in-
flammasome in the pathogenesis of bronchial asthma and
to identify new therapeutic targets based on existing re-
search. A total of 106 sources, published between 2011 and
2025, were analyzed. The literature review was conduct-
ed using databases such as PubMed, eLIBRARY.RU, Scopus,
and Google Scholar, with open access results also retrieved
through Yandex and Google. Search terms included namoze-
He3 bpoHxuanbHol acmmel (pathogenesis of bronchial asth-
ma), posb uHpnammacom 8 passumuu gocnasenus / role of
inflammasome in inflammation, and Hosele Memode! nedeHus
bpoHxuaneHol acmmei [ novel approaches to the treatment
of bronchial asthma. Only studies meeting high methodologi-
cal standards were included, while abstracts, summaries, and
duplicate publications were excluded.

ROLE OF INFLAMMASOMES
IN THE PATHOGENESIS OF BRONCHIAL
ASTHMA

An inflammasome is a macromolecular complex formed by
pattern recognition receptors, such as Toll-like receptors
(TLRs) and nucleotide-binding oligomerization domain-like
receptors (NLRs), upon interaction with pathogens. This in-
teraction leads to the activation of caspase-1, a cysteine pro-
tease that cleaves pro—-interleukin (IL)-1B and pro—IL-18 into
their active forms, which are released during pyroptosis [6].

Inflammasomes play a central role in initiating inflamma-
tory responses by functioning as molecular sensors of infec-
tion, tissue injury, and allergens [7]. TLRs detect extracellu-
lar structures such as allergens and microbial agents, while
NLRs (e.g., NOD1, NOD2) recognize intracellular pathogens.
These interactions initiate signaling cascades that culminate
in inflammasome assembly, followed by caspase-1 activation
and the subsequent production of IL-1B and IL-18 [8]. Gene
polymorphisms encoding these receptors may influence asth-
ma susceptibility and disease severity [9].
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Certain damage-associated molecular patterns activate
TLRs, thereby amplifying inflammation [10]. TLR2 and TLR4
signaling has been shown to trigger nuclear factor kappa B
(NF-kB) activation via high-mobility group box 1 (HMGB1)
and S100 calcium-binding protein A8 (S100A8) [11, 12]. These
pathways involve multiple signaling intermediates that con-
verge at various points to activate NF-kB, leading to the ex-
pression of genes encoding components essential for inflam-
masome assembly [13].

While inflammasome in myeloid lineage cells have been
extensively characterized, their presence and function in bron-
chial epithelial cells remain poorly understood [14]. Upon en-
tering the bronchial epithelium, the allergen interacts with
the NOD-like receptor family pyrin domain-containing protein
NLRP3, which is localized in the epithelial cells of the respira-
tory tract, as well as in dendritic cells and macrophages [15].
NLRP3 (also known as cryopyrin or NALP3) plays a key role in
disrupting antigen tolerance and promoting the development
of asthma [16].

Following allergen interaction with NLRP3, apoptosis-as-
sociated speck-like protein containing a caspase activation
and recruitment domain, known as ASC, becomes activated.
This adaptor protein functions as a molecular bridge between
the NLRP3 receptor and procaspase-1 [17]. The expression,
assembly, and activation of the NLRP3 inflammasome lead to
the proteolytic cleavage of procaspase-1 into its active form,
caspase-1. Activated caspase-1 then cleaves pro—IL-1f and
pro—IL-18 into their mature forms, which subsequently recruit
and activate immune cells, including mast cells, eosinophils,
and T lymphocytes [18, 19]. Ultimately, caspase-1 induces the
formation of the pore-forming protein gasdermin D, initiating
proptosis and the release of proinflammatory mediators [20].

Eosinophils and mast cells play pivotal roles in asthma-
related inflammation through the secretion of histamine, he-
parin, and lysosomal enzymes [21], thereby contributing to
edema, bronchospasm, and mucus hypersecretion. IL-1p fur-
ther stimulates the production of IL-4, IL-5, and IL-13, pro-
moting immediate-type hypersensitivity reactions and airway
hyper-responsiveness [22]. The NLRP3 inflammasome can
activate mast cells, eosinophils, and T lymphocytes, promo-
ting the release of inflammatory mediators such as nitric
oxide, prostaglandins, and leukotrienes, which exacerbate
airway edema and obstruction [23]. This process compro-
mises the barrier function of the bronchial epithelium, further
amplifying allergic inflammation [24].

Studies by Horvat et al. demonstrated that an increased
capacity for inflammasome activation may be a universal
characteristic of systemic immune cells in patients with vary-
ing asthma severity, regardless of gender, degree of obesity,
or granulocyte content in sputum and blood [25]. The release
of mediators depends on disease severity [26]. For example,
in severe asthma, systemic immune cells release higher le-
vels of IL-1P due to the combined effect of antigen-specific
T-helper precursor cell contact with the antigen and the ac-
tivation of NLRP3 inflammasome, compared to cells from
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patients with moderate asthma [27, 28]. These findings reveal
significant differences between moderate and severe asthma,
indicating that systemic immune cells in severe cases pos-
sess an enhanced capacity to respond during the initiation
phase induced by pathogen components required for the syn-
thesis of inflammasome components and pro—IL-1B, as well
as an increased responsiveness to inflammasome activation
required for cleaving and releasing active IL-1p [29].

Microbial infections serve as critical stimuli for both ini-
tiating and activating the NLRP3 inflammasome in the lungs
during infection-related asthma [30]. Respiratory infections
play a major role in triggering immune responses, includ-
ing IL-1B-mediated reactions facilitated by the NLRP3 in-
flammasome in asthma patients. These responses contrib-
ute to the development of severe, steroid-resistant asthma
forms [31]. Such findings highlight that an enhanced inflam-
masome activation capacity in systemic immune cells may
play a key role in the pathogenesis of bronchial asthma. The
increased release of interleukin-1 beta (IL-1p), driven by the
NLRP3 inflammasome in immune cells of individuals with se-
vere asthma, can be pharmacologically inhibited by MCC950,
demonstrating the therapeutic potential of inflammasome
blockade in clinical practice [32].

Several studies have also identified the role of the NLRP1
inflammasome in the development of allergic inflamma-
tion, as the gene encoding the NOD1 sensor is located with-
in the same chromosomal locus (7q14-p15) as genes asso-
ciated with allergic disease susceptibility [33, 34]. Multiple
genes within this locus have demonstrated a positive corre-
lation with elevated serum immunoglobulin E (IgE) levels—
a hallmark of atopic asthma and a key pathogenic factor [35].

PATHOPHYSIOLOGICAL MECHANISMS
IN THE DEVELOPMENT OF BRONCHIAL
ASTHMA

Inflammasome formation in asthma can be regarded as an
early pathophysiological event that precedes immune in-
flammation. Inhaled allergens are endocytosed by antigen-
presenting cells—primarily dendritic cells in the airways—
which continuously monitor the environment for pathogens.
These dendritic cells migrate to the lymph nodes, where they
present antigens via major histocompatibility complex mole-
cules and engage naive CD4* T lymphocytes bearing antigen-
specific receptors [36].

Dendritic cells play a vital role in shaping immune re-
sponses in asthma, acting as sentinels of the immune system.
Through the secretion of various mediators and the expres-
sion of surface molecules, they can either promote immune
tolerance or initiate an active immune response [37]. By di-
recting the differentiation of CD4* T-cells into functionally dis-
tinct helper subsets, dendritic cells determine the character
of the ensuing immune response. This differentiation is influ-
enced by both the structural features of the allergen and the
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mediators secreted by the dendritic cells [38]. The production
of IL-4, OX40 ligand (OX40L), and CD86 promotes the diffe-
rentiation into T-helper type 2 (Th2) cells, which are central to
asthma pathogenesis. A Th2-dominant immune response acti-
vates a humoral pathway marked by increased IgE production
and eosinophil activation, culminating in allergic inflammation
[39]. Genetic polymorphisms in the IL-4, IL-13, and IgE recep-
tor genes are recognized as risk factors for atopic asthma [40].

Following Th2 cell activation, specific cytokines are re-
leased: IL-4 promotes B-cell class switching to IgE, IL-5 acti-
vates eosinophils, and IL-13 stimulates mucus hypersecretion
and class switching from IgG to IgE in plasma cells. The syn-
thesized IgE binds to high-affinity FceRI receptors located on
the surface of mast cells in interstitial tissues and on baso-
phils via its Fc fragments. This IgE—FceRI interaction can per-
sist for years, playing a critical role in asthma exacerbations.
The free Fab fragment of membrane-bound IgE remains avail-
able to bind allergens upon re-exposure, triggering the im-
mediate release of mediators such as histamine, heparin, re-
active oxygen species, leukotrienes, and cytokines, initiating
early-phase symptoms within minutes [41].

Histamine is a key mediator that induces bronchial smooth
muscle contraction (bronchial spasm), coughing, and expira-
tory dyspnea; increases vascular permeability, and leading to
edema; and stimulates nerve endings, causing itching [42].

Arachidonic acid derivatives, including leukotrienes (LTC,,
LTD,, LTE,) and prostaglandin D, (PGD,), contribute to bronchi-
al obstruction by inducing bronchial smooth muscle spasm,
mucosal edema, and mucus hypersecretion—factors that
further exacerbate airway narrowing [43].

Chemoattractants such as IL-5 and eotaxin recruit eosi-
nophils, lymphocytes, and monocytes to the airway mucosa.
These cells release inflammatory mediators, including eosi-
nophil cationic protein and major basic protein, which damage
the epithelium and result in bronchial obstruction, mucosal
edema, and mucus production several hours later— charac-
teristic of the late-phase response [44, 45].

It is important to highlight the process of memory cell for-
mation: as a result of interaction between T-lymphocyte re-
ceptors and co-stimulatory molecules on the surface of Th2
cells, sensitized B-lymphocytes are generated. These lym-
phocytes have the capacity to differentiate into memory cells,
which accelerates the onset of allergic reactions upon repeat-
ed exposure to the allergen [46].

As the disease progresses, inflammation becomes chro-
nic, leading to structural changes in the airways—commonly
referred to as airway remodeling [47]. This process includes
smooth muscle hyperplasia and thickening of the bronchial
walls, which increases susceptibility to bronchial spasm. Gob-
let cell hypertrophy and hyperplasia result in excessive mucus
production and obstruction of the small airways. Fibrosis and
thickening of the basement membrane reduce airway elasti-
city, contributing to fixed airflow limitation. Epithelial damage
and desquamation impair the protective barrier, heightening
sensory nerve activation and provoking chronic cough [48].
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The pathogenesis of asthma involves a complex interplay
between immune, inflammatory, and structural mechanisms
[49, 50]. Understanding these processes is essential for de-
veloping effective treatment strategies that not only at con-
trol symptoms but also prevent airway remodeling [51, 52].

Recent studies have identified the role of inflammasome
in the pathogenesis of anaphylactic shock, a life-threatening
allergic reaction characterized by excessive immune activa-
tion. IL-1B increases vascular permeability, leading to ede-
ma and vasodilation—both hallmarks of anaphylaxis. IL-18
enhances the inflammatory response by activating additional
immune cells, such as T-helper cells. Both IL-1p and IL- 18 ac-
tivate mast cells, promoting degranulation and the release of
mediators including histamine, prostaglandins, and leukotri-
enes [53]. These actions contribute to the clinical features of
anaphylaxis, such as bronchial spasm, hypotension, pruritus,
and erythema. IL-1p also induces endothelial cell retraction,
further increasing vascular permeability, which exacerbates
fluid extravasation, lowers arterial pressure, and may result
in shock [54]. Excessive inflammasome activation—such as
during a systemic inflammatory response—can trigger a cy-
tokine storm (hypercytokinemia), a state of uncontrolled in-
flammation that amplifies tissue damage [55].

ROLE OF THE RESPIRATORY
EPITHELIUM IN THE PATHOGENESIS
OF BRONCHIAL ASTHMA

The structural characteristics of allergens can influence the
configuration and activity of proteins, lipids, and nucleic acids,
thereby affecting intracellular signaling pathways [56]. Pro-
teases present in many allergens activate immune signaling
pathways by modifying protease-activated receptors. These
stimuli disrupt epithelial cell function and promote the release
of mediators that recruit and activate leukocytes, amplifying
allergic inflammation [57].

A key cytokine produced by the airway epithelium is thy-
mic stromal lymphopoietin (TSLP), which induces significant
changes in dendritic cells—antigen-presenting cells that de-
liver allergens to T-cells during the early phase of the allergic
response. TSLP stimulates dendritic cells to release the che-
mokines CCL17 and CCL22, which facilitate T-cell recruitment
to the airways [58]. It also enhances 0X40 ligand expres-
sion, guiding dendritic cell-mediated T-cell activation toward
a Th2-skewed immune response. TSLP, along with epithelial
proinflammatory cytokines such as tumor necrosis factor a
(TNF-a) and IL-1B, can also activate mast cells [59].

Once thought to function solely as a physical barrier and
site for gas exchange, the respiratory epithelium is now re-
cognized as a central regulator in the inflammatory cas-
cade [60]. In addition to serving as the interface between the
host and environment, it produces a wide array of mediators
in response to stimuli such as allergens, infectious agents,
and oxidants, thereby engaging various components of the
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immune system [61]. As such, the airway epithelium plays an
essential role in the innate immune response in asthma.

Following leukocyte infiltration into the airways, these im-
mune cells produce inflammatory cytokines that strongly ac-
tivate epithelial cells. This activation fosters chronic inflam-
mation, wherein epithelial cells and leukocytes activate one
another [62].

The epithelium also secretes growth factors that en-
hance inflammation and contribute to structural remodel-
ing [63]. Granulocyte-macrophage colony-stimulating factor
(GM-CSF) extends the survival of eosinophils and neutrophils,
while stem cell factor supports mast cell survival and activa-
tion [64]. Vascular endothelial growth factor promotes angio-
genesis, increases vascular permeability, and contributes to
airway edema [65]. Transforming growth factor 81 (TGF-B1)
stimulates fibroblast and airway smooth muscle proliferation
and promotes extracellular matrix deposition in the bronchi-
al epithelium [66]. Along with cytokines, these mediators initi-
ate and sustain chronic inflammation and airway remodeling,
characterized by basement membrane thickening, fibrosis,
and smooth muscle hypertrophy, which ultimately impairs
lung function [67].

Reactive oxygen species (ROS) further maintain chronic
airway inflammation by modulating histone acetylation and
phosphorylation through mitogen-activated protein kinase
pathways. Oxidative stress promotes the activation of AP-1
and NF-kB, leading to the upregulation of genes that encode
proinflammatory mediators and antioxidants [68].

ROS also induce lipid peroxidation and generate toxic
metabolites that compromise cell membrane integrity [69].
These species stimulate the expression of chemokines such
as macrophage inflammatory protein 1a (MIP-1a), which re-
cruits monocytes, neutrophils, eosinophils, basophils, and
lymphocytes [70]. ROS also influence the synthesis of ni-
tric oxide (NO), produced by inducible NO synthase in airway
macrophages during inflammatory responses [71].

Eosinophils are markedly elevated in the airways of most
patients with asthma. IL-5 plays a central role in eosinophil
proliferation, a function shared by GM-CSF secreted by ep-
ithelial and mast cells [72]. Chemokines such as CCL5 and
CCL11 mediate eosinophil recruitment to the airways. [73].
They can present antigens to T-cells and secrete growth fac-
tors (e.g., TGF-B1), emphasizing their pathogenic role in asth-
ma [74]. Their contribution may differ across asthma phe-
notypes, with elevated eosinophils counts more commonly
observed in severe cases [75].

IL-13, a Th2-derived cytokine, has emerged as a thera-
peutic target [76, 771. It induces airway hyperresponsiveness
and structural changes, including subepithelial fibrosis, air-
way smooth muscle proliferation, and goblet cell hyperpla-
sia. IL-13 drives inflammation primarily via epithelial activa-
tion and promotes eosinophilia through chemokine induction
(e.g., CCL11) [78]. It is also linked to glucocorticoid resistance,
with elevated levels detected in patients with steroid-refrac-
tory asthma [79].
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Asthmatic airways also contain large numbers of macro-
phages that secrete inflammatory cytokines and chemokines
[80]. In severe asthma, neutrophils are often elevated, likely
due to secondary bacterial infections, which may contribute to
reduced responsiveness to glucocorticoids [81].

Recently, a subset of T-helper cells known as Th17 cells
has been implicated in asthma-related inflammation [82]. In
murine models, allergen sensitization leads to Th17 migra-
tion to the lungs, where they enhance neutrophilic infiltration
and amplify Th2-mediated eosinophilic inflammation [83, 84].
IL-17 upregulates the expression of cytokines, chemokines,
adhesion molecules, and growth factors. The exact role of
IL-17 in asthma, and its interactions with Th2 cells and other
leukocytes populations, remains under active investigation
and is vital to understanding disease mechanisms and deve-
loping new treatments [85].

Although the NLRP3 inflammasome is essential for
mounting effective immune responses, its hyperactivation is
linked to a range of inflammation-driven conditions, including
cardiovascular, metabolic, neurologic, and autoimmune dis-
orders [86—88].

Multiple regulatory pathways act to limit excessive inflam-
masome activation [89]. Interferons inhibit inflammasome ac-
tivation by inhibiting caspase-1, which is required to process
pro—IL-1B and pro-IL-18 [90]. Interferons also downregulate
the expression of NOD1, NOD2, and ASC, thereby impeding in-
flammasome formation [91]. They enhance IL-10 production,
a key anti-inflammatory cytokine that reduces neutrophil and
eosinophil infiltration into the airways [92]. Autophagy further
mitigates inflammation by degrading inflammasome compo-
nents. A critical interferon-induced mechanism for suppress-
ing NLRP3 activity involves inducible nitric oxide synthase in
T-cells, which leads to leading to nitric oxide—mediated nitro-
sylation and inhibition of NLRP3 [93].

Ongoing studies on NLRP3 inhibition seeks to reduce airway
inflammation in patients with chronic diseases such as asthma,
without compromising systemic immune functions [94, 95].

NEW THERAPEUTIC PERSPECTIVES
IN BRONCHIAL ASTHMA

MCC950 is a small-molecule inhibitor that selectively blocks
NLRP3 inflammasome activation, representing a promising
therapeutic strategy for inflammatory diseases [96].

Initially developed by Pfizer in 2008 under the name CP-
456,773 (also known as CRID3), the compound’s mechanism
of the action was unclear, and subsequent clinical trials were
halted. In 2015, researchers led by Matt Cooper and Luke
0'Neill identified MCC950 as a potent and selective NLRP3 in-
hibitor [97].

Currently, Novartis is advancing the clinical development
of MCC950, having successfully completed phase | trials,
which highlights its potential for treating inflammatory con-
ditions [98].
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MCC950 (N-[[[1,2,3,5,6,7-hexahydro-s-indacen-4-yl]
amino]carbonyl]-4-[1-hydroxy- 1-methylethyl]-2-furansul-
fonamide) inhibits the NLRP3 inflammasome selectively by
preventing its assembly and the subsequent activation of
caspase-1. This action suppresses the release of IL-1p and
IL-18, thereby reducing airway inflammation. MCC950 inter-
feres with the conformational changes in NLRP3 required for
inflammasome formation [99], and it limits neutrophil recruit-
ment and activation—key mechanisms in the pathogenesis of
severe and glucocorticoid-resistant asthma [100].

Recent preclinical studies have demonstrated MCC950's
efficacy in treating inflammatory, autoimmune, and neurode-
generative diseases [101-105], including severe asthma [106].

CONCLUSION

The NLRP3 inflammasome plays a pivotal role in airway in-
flammation by promoting cytokine release and immune cell
activation. Its hyperactivity is associated with severe and
steroid-resistant asthma, making it a compelling target for
novel therapies. Modulating inflammasome activity may offer
a promising approach for precision treatment of asthma. In-
hibitors such as MCC950 show potential in reducing inflam-
mation and improving clinical outcomes. However, further
research is necessary to evaluate the safety and long-term
effects of NLRP3 inhibition. Continued exploration of its regu-
latory mechanisms will support the development of effective,
personalized therapeutic strategies for asthma.
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