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ABSTRACT

Short bowel syndrome is a life-threatening condition characterized by the intestine’s inability to maintain homeostasis
through enteral nutrition. Despite the use of conservative approaches, including parenteral nutrition, most patients fail to
achieve complete enteral autonomy or correct electrolyte and nutrient deficiencies. Surgical interventions such as longitudinal
intestinal lengthening and tailoring, serial transverse enteroplasty, and intestinal or multivisceral allotransplantation are
associated with a high risk of complications owing to technical limitations and the requirement for immunosuppressive
therapy. Tissue engineering is a promising alternative. Current strategies use various synthetic and biological extracellular
matrices as scaffolds, including silk fibroin, collagen, gelatin, hydrogels, polyglycolic acid, and allogeneic intestinal submucosa.
The cellular components of tissue-engineered constructs include embryonic, pluripotent, and mesenchymal stem cell lines,
whose regenerative potential is enhanced by various adjuvants and growth factors. Given the biological properties of these
cells and specifics of transplantation and post-transplant changes, mesenchymal stem cells are a promising cellular vehicle
for morphofunctional restoration of the residual intestine. This study provides a comprehensive review of tissue-engineered
constructs developed for intestinal reconstruction in short bowel syndrome.
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lMoTeHuMan TKaHeUH)KEHEPHbIX KOHCTPYKLUM
AN KOPPeKLMU CUHAPOMA KOPOTKOM KMUILKM
B pereHepaTUBHON MeuLUHe

.M. Hacubynnun, A.W. Jlebepesa, K.B. lanunko, B.A. Mapkenos, [1.1. Xanunos

BalKupcKuii rocynapcTBEHHbI MEAVLIMHCKUIA YHUBEpCUTET, T. Yda, Poccus

AHHOTALUA

CWHAPOM KOpOTKOW KULLKM — OMacHoe /1Sl XKU3HW COCTOSHWE, NPOSBNSIOLLEECS HECMIOCOBHOCTBIO COBCTBEHHOM KULLIEYHMKA
NOLAePKMUBaTL TOMe0CTa3s NMoCpeACcTBOM 3HTEPANIbHOTO NUTaHMs. HecMoTpsA Ha NpoBefeHMe PasfiuiHbIX KOHCEPBATUBHbIX Me-
PONPUATUAN, BKIIOYas NapeHTepabHOe NuTaHue, B 60MbLUMHCTBE Cy4aeB He YAAETCSA LOCTUYb NOHOW 3HTEPabHOM aBTOHOMUM
W YCTPaHUTb Le LT 3EKTPONIUTOB M NUTaTeNbHbIX BelecTs. OnepaTuBHbIE BMeLIATENbCTBA, NPOBOAMMbIE N0 MOKA3aHWAM,
TaKWe KaK YIJIMHEHWE U cyxeHune Kuwku (LILT), nocnefoBatenbHas nonepeyHas sHTeponnacTuka (STEP), a Takke annotpak-
CMNaHTaLMA KULLEYHWUKA UM €ro OPraHOKOMIIEKCOB, COMPSXKEHbI C BbICOKWI PUCKOM OCNOXHEHMIA, 00yCNOBNEHHbIX KaK Tex-
HUYECKUMM OTpaHUYeHNAMM, TaK U He0OXOAMMOCTbIO NPOBELEHUS IMMYHOCYNPECCUBHON Tepanuu. CoBPeMEHHBIM peLLeHreM
AaHHOM NPoBEeMbI BbICTYNaeT TKaHeBas UHXeHepHs. Ha CeroaHAWHWIA ieHb U3BECTHBI CNOCOObI NPUMEHEHNUS Pa3NIUYHBIX CUH-
TETUYECKUX U BUONOTUYECKUX IKCTPALIENIONAPHBIX MAaTPUKCOB, B KayecTBe cKadponaa ucnonb3yioT GMOPOMH LWENKa, Konna-
reH, KeNaTuH, TMAporesib, NOMUIIUKONEBbIE KUCIOTI, anfOreHHyto NOACM3NUCTYH0 0CHOBY KULLEYHWUKA. KNeTOUHbIA KOMMOHEHT
B TKaHENHXEeHepHbIX KOHCTPYKUKNAX npencraBneH 3M6pI/IOHaﬂbeIMVI, NIOPUNOTEHTHBIMX U Me3eHXNMaJlbHbIMU CTBO10BbIMU
NMHUAMK, Yeil pereHepaTopHbIi NOTEHUMAN PSS aBTOPOB YCUNIMBAET NYTEM A00aBNeHNs pasNMyHbIX afbloBaHTOB M (aKTOpOB
pocTa. YuuTbiBasi 610N0ruio AaHHbIX KNETOK M 0CODEHHOCTW TpaHCMNAHTaLMM U NOCTTPAHCMIAHTaLMOHHbIE U3MEHEHNS, HeMb3S
He OTMETUTb 3HAUNUTENbHbIN NOTEHLMAN ME3EHXMMabHbIX CTBOJIOBbIX KITETOK KaK KETOYHOro HocuTens ans MoppodyHKuMo-
HaNIbHOr0 BOCCTAHOBIEHUS! Pe3nAYanbHOMo KuLLeYHWKa. HacToswasn paboTa npeactaBnsieT cobont 0630p U3BECTHbIX TKAHEUH-
JKEHEPHBIX KOHCTPYKLMMA, MPUMEHSIEMBIX A8 BOCCTAHOBNEHMUS KMLLEYHWUKA NPY CUHAPOME KOPOTKOM KULLIKK.

KntoueBble cnoBa: CMHAPOM KOPOTKOM KULLKM; TPAHCM/IAHTALMA KULLEYHWKA; TKaHeBas UHMEHepUs; KIETOYHas UHXeHepus;
0630p nuTEpaTypbI.
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Intestinal tissue engineering is a promising field of medicine
aimed at creating functional organs and tissues to replace
damaged or lost structures [1]. One of its most relevant ap-
plications is the treatment of short bowel syndrome (SBS)—
a severe condition requiring a comprehensive approach, in-
cluding the development of tissue-engineered small intestine
(TESI) [2].

SBS is characterized by the inability of the body to main-
tain adequate fluid, nutritional, energy, and micronutrient bal-
ance due to small intestine resection or congenital shorten-
ing. This leads to a reduction in the absorptive surface area,
impaired nutrient absorption and utilization, and pronounced
metabolic disturbances [3]. The most common causes of
SBS are related to surgical interventions—intestinal resec-
tion with jejuno-colonic or ileo-colonic anastomosis due to
mesenteric ischemic necrosis, inflammatory bowel disease,
necrotizing enterocolitis, incomplete intestinal volvulus, or
traumatic and radiation injuries [2]. Additional causes may
include repeated surgeries and extensive trauma leading to
significant loss of intestinal length [4].

Moreover, an increasing SBS incidence has been noted,
which is attributed to improvements in diagnostic capabili-
ties and a decline in mortality among premature infants with
extremely low and very low birth weight, who often present
with congenital intestinal malformations [5].

Currently, it is well established that SBS develops fol-
lowing the resection of more than 75% of the small intestine,
which corresponds to a residual bowel length of less than
200 cm. A persistent severe clinical picture typically emerg-
es when the remaining small intestine measures less than
120 cm in total length [6]. The clinical manifestations of intes-
tinal failure may vary depending on the extent of bowel re-
section and presence of comorbidities. Patients with a resid-
ual small intestine of less than 10-25 cm develop ultra-SBS,
which requires a distinct therapeutic strategy for maintaining
nutritional status [7].

The clinical presentation of SBS includes diarrhea, ab-
dominal pain, steatorrhea, dehydration, and signs of mal-
digestion and malnutrition. If not adequately compensated,
patients may develop electrolyte, mineral, and fluid imbal-
ances, which can lead to multiple-organ failure and even
neurological deficits [6].

These data highlight the urgent need for novel therapeu-
tic approaches, including tissue-engineering strategies. Tra-
ditional therapies, including parenteral nutrition (PN), may
be insufficient to maintain adequate metabolic status in pa-
tients with SBS [8]. However, PN plays an essential role in
correcting metabolic disturbances and may be required life-
long in patients with severe, decompensated intestinal fail-
ure. Notably, PN is associated with significant risks, including
catheter-associated infections, sepsis, and catheter-induced
thromboembolism [9].

Allotransplantation of the intestine or multivisceral or-
gans is widely recognized as an SBS treatment; howev-
er, it requires lifelong immunosuppressive therapy, which is
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particularly critical in pediatric patients due owing to high
complication risk [10].

Other surgical interventions for SBS include longitudinal
intestinal lengthening and tailoring (LILT) and serial transverse
enteroplasty (STEP). STEP, which was first introduced in 2002,
has shown promising results in infants aged below 1 year.
Repeat STEP has proven feasible and effective in restoring
normal enteral nutrition in infants with SBS, underscoring
the value of this approach [2]. In cases wherein SBS is com-
plicated, for example, by intestinal fistula formation, the im-
plementation of aggressive therapeutic strategies is required
to prevent the development of severe intestinal failure [11].

Compared to STEP, LILT enables the creation of a lon-
ger intestinal lumen. According to a systematic review by
Nagelkerke et al., LILT is preferable for pediatric patients,
whereas STEP is considered a secondary option or is used in
cases wherein LILT is technically unfeasible [12]. Neverthe-
less, no current approach offers a universal solution, indicat-
ing the need for more promising therapeutic strategies.

Tissue engineering is an emerging direction in the treat-
ment of SBS. It involves the use of various extracellular ma-
trix scaffolds combined with cell-based technologies to cre-
ate a functional intestinal substitute capable of reducing
rejection risk and improving patients’ quality of life [13]. Re-
cent studies have demonstrated that tissue-engineered con-
structs (TECs) may enable the recovery of full enteral autono-
my in patients with severe intestinal failure [2, 14].

Scaffolds for TECs. In tissue engineering, particular at-
tention is paid to developing synthetic or biological scaf-
folds capable of supporting the growth and proliferation of
cell lines to form the desired tissue microarchitecture. It is
crucial that synthetic scaffolds (e.g., polyglycolic acid [PGA]
and polycaprolactone) and biological ones (collagen sponge,
acellular dermal matrix, and intestinal submucosa) ensure
biocompatibility and mechanical support and promote inte-
gration with surrounding tissues, which is critical for suc-
cessful implantation [1].

Several studies have modified polylactide-based synthet-
ic matrices and their copolymers, improving their mechan-
ical and biological properties for use in tissue engineering,
providing a more favorable environment for cell growth com-
pared to biological scaffolds [15, 16].

Furthermore, silk fibroin is considered a promising bio-
material owing to its high mechanical strength and excel-
lent biocompatibility [17]. Studies have shown that fibroin
can be modified to enhance its antimicrobial properties and
improve cellular adhesion [18]. Liu et al. developed a nano-
fibrous construct based on silk fibroin using coaxial elec-
trospinning, incorporating recombinant human vascular en-
dothelial growth factor (VEGF) and transforming growth
factor 1 (TGF-B1) [19]. The resulting bioactive membrane,
through controlled VEGF release, promotes angiogenesis
and tissue regeneration, whereas the presence of TGF-f1
may further enhance this process by promoting cell differen-
tiation and extracellular matrix formation, thereby providing
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a synergistic effect for successful intestinal healing [20]. The
addition of VEGF and platelet-derived growth factor has been
found to significantly improve vascularization and maintain
cell viability in tissue constructs [21]. Decomposed scaffold
structures have been considered as basis for successful tis-
sue engraftment and regeneration [22]. This underscores the
potential for angiogenesis at the capillary level in the future
intestinal segment; however, the issue of functional nutrient
delivery remains unresolved [23].

Studies have shown that allogeneic decellularized colla-
gen matrix-based biomaterials can mimic intestinal tissue,
promoting regeneration without scarring or encapsulation
and reducing inflammatory and fibrotic changes [8]. In con-
trast, biological matrices are derived from the decellulariza-
tion of native organs, which preserves the macro- and mi-
croarchitecture of the extracellular matrix along with its
mechanical properties, creating optimal conditions for cell
colonization [22]. These matrices possess high biocompati-
bility and can be used to create functional tissues, making
them promising candidates for regenerative medicine [24].

Various cross-linking agents and bioactive components
can enhance the interaction between cells and collagen or
chitosan matrices [16]. Owing to its unique properties such
as controlled biodegradation and antimicrobial activity, chito-
san may be used to create matrices with improved mechani-
cal performance [25].

Modern technologies, including three-dimensional (3D)
printing, open new avenues for fabricating complex matrix
structures that more precisely mimic native tissues. More-
over, 3D printing enables micro- and nanoscale architectur-
al control of the matrix, improving cell adhesion and prolif-
eration [26]. Roegiers et al. developed an in vitro intestinal
model based on gelatin-methacryloyl-aminoethyl methac-
rylate (GelMA-AEMA), which demonstrated permeability to
nutrients and drugs [27]. The authors showed that hydro-
gel morphology significantly influences cellular response, as
evidenced by comparisons between the formation of a func-
tional intestinal epithelial monolayer on flat hydrogel films
and on 3D hydrogel scaffolds that preserve morphological
similarity to intestinal architecture [28]. The results exhibited
that the developed constructs provided adequate permeabili-
ty for a medium-sized marker molecule, supporting their po-
tential application in biomedical research [29].

The combination of hydrogels with a culture of Caco-2/
HT29-MTX cells showed high biocompatibility, enabling func-
tional epithelial monolayer formation within 21 days on 2D
hydrogel films [30]. This was confirmed by measurements
of transepithelial electrical resistance and immunohisto-
chemistry, indicating the successful establishment of barri-
er function [31]. Concurrently, 3D constructs failed to reach
confluence within 35 days, underscoring the importance of
selecting an appropriate scaffold architecture to achieve de-
sired functional characteristics [28]. Thus, the findings con-
firm the morphofunctional similarity of novel gelatin methac-
rylate-based hydrogel systems to the residual intestine.
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Transplantation model. The omentum and renal cap-
sule are traditional transplantation sites of tissue-engineered
constructs, as demonstrated by Zabolian et al. [32], who em-
phasized that the omentum is an ideal implantation site be-
cause of its high vascularization. This makes it suitable for
successful intestinal anastomosis placement, including its
application as a wrap around the anastomosis, combining
advantages from surgery and tissue engineering. Moreover,
exposure of the graft to the mesentery is feasible, as mesen-
teric vascularization more closely resembles native entero-
hepatic circulation [32]. This may provide more efficient nutri-
ent absorption critical for assessing the function of TECs [33].
Thus, the choice of implantation site plays a key role in the
success of tissue engineering and regenerative medicine.

Cell Lines for TECs. Regardless of the scaffold’s origin,
it can be seeded with various proliferative cell types [13]. Cell
transplantation approaches have evolved from direct injec-
tion of cell suspensions into tissues or the vascular system.
In 1993, the Vacanti Laboratory at Massachusetts General
Hospital employed biodegradable polymer scaffolds seeded
with cell clusters, which were subsequently implanted into
host animals. These experimental methods demonstrated
satisfactory cell viability, proliferation, and engraftment, par-
ticularly of enterocytes and fetal small intestinal cells [34].

Some studies have proposed using cell lines derived
from human colorectal adenocarcinoma to culture villus-like
structures that may further differentiate into enterocytes [35].
However, a major limitation of this approach is the high tu-
morigenic potential of such cell lines, restricting their use in
intestinal regeneration [36]. Researchers turned to pluripo-
tent embryonic stem cells (ESCs) as a promising avenue in
cellular engineering to address this issue. ESCs are capable
of self-organizing into 3D structures and organoids that ex-
hibit native-like crypts and villi [35].

ESCs possess a high capacity for self-renewal and dif-
ferentiation into various cell types. However, studies have
shown that ESCs seeded onto decellularized matrices may
not migrate into the scaffold or initiate lineage-specific differ-
entiation, challenging their effectiveness in generating tissue
structures [37]. Nevertheless, research has demonstrated
the regenerative potential of TECs derived from ESCs. Konu-
ma et al. reported the regeneration of intestinal segments
through spontaneous integration of organoid structures into
damaged areas, leading to distal intestine restoration [38].
Similar results have been achieved in other studies [39].

Notably, pluripotent stem cells possess unlimited prolif-
erative capacity and can differentiate into cell types derived
from all three germ layers [40]. This makes them ideal candi-
dates for applications in regenerative medicine. In particular,
it has been shown that pluripotent stem cells can be differ-
entiated into tissues resembling embryonic intestine, exhib-
iting secretory and absorptive functions [41]. However, de-
spite advancements in generating such tissues, considerable
barriers to their clinical application remain [8]. For instance,
tissues derived from pluripotent stem cells were found to
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express mesenchymal markers such as FOXF1 and vimen-
tin, indicating the presence of a mesenchymal layer. Never-
theless, these tissues lack vascular and neural components,
which limits their functionality and viability upon transplan-
tation. Moreover, their oncogenic potential and genomic in-
stability and ethical and technical challenges remain major
concerns [42]. These issues highlight the need for alternative
approaches that preserve the mesenchyme alongside the ep-
ithelium, which may be particularly important for therapies
aimed at replacing the small intestine.

Mesenchymal stromal cells (MSCs) are multipotent cells
widely utilized in tissue engineering. They are capable of dif-
ferentiating within the same germ layer, for example, into
adipocytes, osteocytes, and chondrocytes, and are charac-
terized by high proliferative potential and differentiation ca-
pacity [43]. MSCs possess immunomodulatory properties
and contribute to tissue healing [44]. They are more readily
available than ESCs, and their use in decellularized matrices
may facilitate tissue structure formation [45].

In the context of small intestine tissue engineering, MSCs
are valuable owing to their pleiotropic secretion of growth
factors such as VEGF, IGF-1, HGF, and EGF [46]. These mol-
ecules play a key role in the regeneration of the smooth
muscle layer and neuromuscular apparatus. Implantation of
MSCs onto intestinal submucosal scaffolds, PGA, and type |
collagen supports optimal cell differentiation and epithelial
ingrowth [47]. Importantly, MSCs can be derived from read-
ily accessible adipose tissue, offering greater practicality for
clinical use [48]. In addition to promoting angiogenesis, these
cells also exhibit immunomodulatory properties and protect
against apoptosis, making them multifunctional in the field of
tissue engineering [49].

Organoids. The methods developed by Evans et al. in
the early 1990s have been adapted for the in vivo generation
of TESI [501. In this context, cells were isolated as organoid
units—multicellular aggregates consisting of epithelial and
mesenchymal components—opening new horizons for the
creation of functional tissues [50]. Organoid units (OUs) are
3D structures that mimic an entire organ, including its high
degree of complexity, organization, and functionality. OUs
may be more effective for generating organ-specific struc-
tures compared to traditional approaches involving ESCs or
MSCs [51]. Intestinal organoids have become valuable mo-
dels for studying intestinal regeneration because of their
ability to reproduce the cellular composition and architecture
of the gut [52]. These organoids encompass a spectrum of in-
testinal cell types, including stem, Paneth, enteroendocrine,
goblet, and transit-amplifying cells and enterocytes, provid-
ing a comprehensive platform for investigating regenerative
processes [53].

Sugimoto et al. demonstrated the survival and regenera-
tion of orthotopically transplanted organoid unit xenografts in
vivo [54]. The authors used differentiated human colonic or-
ganoids generated using the CRISPR-Cas9 method. The cel-
lular component was represented by colonic stem cells
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(CoSCs), and the recipients were mice of an experimental
strain with induced immunodeficiency (n = 178). CoSCs were
orthotopically transplanted into a preformed defect in the co-
lonic wall by injecting a suspension of 3-4-day-passaged
cells into the mucosa, with subsequent exposure to cyanoac-
rylate glue. Post-transplantation, organized crypt-like struc-
tures formed, morphologically resembling the native colonic
mucosa, with villi, crypts, and columnar epithelium.

Immunohistochemical analysis confirmed the presence
of goblet, Paneth, and neuroendocrine cells through spe-
cific expression of GFP and LGRS markers; approximately
80% of the cells were found to be of monoclonal origin. Al-
though fully developed crypts, epithelium, and villi morpho-
logically identical to residual native areas were histologi-
cally verified, assessment of mitotically active zones at the
base of the crypts showed low expression of Kié7 and ethy-
nyl deoxyuridine, indicating a relatively slow cellular regen-
eration. Nonetheless, we concluded that even xenogeneic or-
ganoid transplantation can lead to the formation of structures
morphologically resembling native intestine, demonstrating
a high degree of integration and functional activity. Moreover,
patient-derived autologous organoids have been shown to
regenerate epithelial cells in Crohn’s disease, revealing that
stem cell properties vary depending on disease activity [55].

In a study by Zakhem et al., a human tissue-engineered
bowel (hTEB) based on a chitosan scaffold seeded with
smooth muscle cells (SMCs) was used, followed by neo-in-
nervation with human neuronal progenitor cells isolated and
differentiated directly from the small intestine. In this con-
text, hTEB transplantation was initially performed into the
omentum of athymic rats with surgically induced SBS, fol-
lowed by transplantation of the resulting construct (vascular-
ized in vivo) directly into the intestine by creating two anasto-
moses on a bypassed intestinal loop. Zakhem et al. reported
that the TECs explanted from the omentum on day 28 exhibit-
ed a physiological peristaltic response to equimolar solutions
of potassium chloride and acetylcholine, which was inhibited
by atropine and nifedipine, indicating the presence of func-
tional neuromuscular synapses.

This approach demonstrated a significant increase in the
intestinal absorptive surface area. This increase in absorp-
tive surface area is critical as it is directly associated with
improved ability of the intestine to absorb nutrients. The ani-
mals that received TECs began to regain body weight 1 week
earlier than those in the control group, indicating more effec-
tive restoration of intestinal function. Specifically, by postop-
erative day 40, the animals with TECs reached 98.5% of their
preoperative body weight, whereas those in the control group
that did not undergo transplantation reached only 77% [56].

In earlier reports, Nakase et al. described the use of col-
lagen scaffolds seeded with SMCs in a canine model for re-
generating the muscular layer of the small intestine [57].
The study employed pure collagen matrices and constructs
incorporating autologous SMCs isolated from the gastric
wall. The authors noted that the scaffolds demonstrated
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significant potential for intestinal regeneration; the implanted
SMCs were morphologically verified within the lamina pro-
pria, forming an appropriate layer of smooth muscle.

Furthermore, the role of specific factors in promoting in-
testinal regeneration has been investigated. C3a has been
shown to enhance the formation of intestinal organoids via
C3aR1, implicating the complement system in the modula-
tion of regenerative processes [58]. Exosomes derived from
human adipose-derived mesenchymal stem cells have dem-
onstrated cytoprotective effects by supporting intestinal stem
cells in epithelial regeneration, indicating their therapeutic
potential for intestinal repair [59].

Moreover, a recent study revealed the influence of micro-
environmental factors, particularly hypoxia, on stem cell ar-
chitecture and intestinal organoid differentiation [60].

An optimal cell product for matrix seeding is selected
based on several factors, including cell availability, differ-
entiation and migration capacity, and the intended therapeu-
tic outcome [13]. Although ESCs have high potency, they may
be less favorable because of difficulties in cultivation and di-
rected differentiation. In contrast, CSCs and MSCs may of-
fer more practical solutions owing to their accessibility and
comparable capacity for tissue formation [37].
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Thus, the optimal cellular component for developing pro-
totypes of tissue-engineered constructs is predominant-
ly represented by mesenchymal stem cells, owing to their
unique properties and clinical applicability [45]. Notably, acti-
vated adipocytes, which can also serve as a source of MSCs,
are capable of producing numerous angiogenic factors, fur-
ther reinforcing their role in tissue engineering.

CONCLUSION

In recent years, significant progress has been made in intes-
tinal regeneration through the use of stem cells, organoids,
and signaling pathway regulators, contributing to the resto-
ration of intestinal tissues and functions. The application of
organ-specific autologous cells in tissue engineering enables
a personalized approach to SBS treatment. Utilizing these
advanced strategies, individualized intestinal rehabilitation
plans can be tailored to each patient. By improving synthetic
and biological scaffolds, refining differentiation protocols for
pluripotent and multipotent stem cells and organoid struc-
tures, and gaining a deeper understanding of the underlying
molecular pathways, promising prospects can be achieved
for the development of novel treatment approaches for SBS.
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MpOCOB, CBA3aHHbIX C TOYHOCTLIO M [J0BPOCOBECTHOCTBIO /t0bOI €€ YacTw.
3JTtnyeckas akcnepTUsa. HenpumeHumo.

WcTouHnKm duHancmpoBanma. OTcyTCTBYHOT.

PackpbiTue WHTepecoB. ABTOPbI 3asBNAIOT 006 OTCYTCTBMM OTHOLLIEHMH,
AeATeNbHOCTU W VHTEPECOB 3a NOCEAHWE TPY roAa, CBA3aHHbIX C TPETbM-
MW TMLaMK (KOMMEPYECKUMM N HEKOMMEPYECKUMW), UHTEPECk KOTOPbIX
MOTyT BbITb 3aTPOHYTHI COEPIKaHWEM CTaTby.

OpuruHanbHocTb. [1py co3faHnm HacTosLLel paboTkl aBTOpLI HE UCTONb-
30Ba/v paHee onybnnKoBaHHbIe CBEAEHWSA (TEKCT, UNMIOCTPALIMK, [laHHbIE).
JlocTyn K AaHHbIM. PefjaKUMOHHaA NOAMTUKA B OTHOLLEHWW COBMECTHOTO
MCMOMb30BaHUSA aHHbIX K HAcTosILLLEN paboTe He MPYMEHWMa, HOBble [JaH-
Hble He cobupany v He co3aaBany.

leHepaTMBHBIA UCKYCCTBEHHBIN UHTeNNeKT. [pyn co3aaHumn HacTosLLen
CTaTbW TEXHOMOTMMW FEHEPATUBHOIO MCKYCCTBEHHOTO MHTENNIEKTa He WC-
nonb30Banu.

PaccMoTpeHue n peueHsupoBanue. Hactosilas pabota nogaHa B xyp-
Han B MHWLMATMBHOM MOPSSKE M PacCMOTPEeHa B COOTBETCTBUM C MpoLe-
Aypo fast-track. B peLieH3MPOBaHUM Y4aCTBOBANM TPU BHELLHWX PeLieH-
3€HTa, YNeH PeAaKLMOHHON KOMNErn 1 Hay4HbI pefaKTop U3AaHuA.
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