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ABSTRACT

The pathogenesis of neurodegenerative diseases is associated with proteopathy and the abnormal aggregation of specific
proteins, including amyloid- and tau protein in Alzheimer's disease, a-synuclein in Parikinson disease, and TDP-43 and FUS
in amyotrophic lateral sclerosis. Etiological factors may include viral infections because of the protective functions of the above
proteins in relation to specific viruses. In turn, the latter may enhance the expression of retroelements. Another cause of neu-
rodegenerative diseases is physiological aging, as it activates retroelements and is associated with proteopathy of antiviral
proteins, which normally suppresses the expression of retroelements. It is assumed that the etiological factors of amyotrophic
lateral sclerosis, Alzheimer disease, and Parkinson disease include the associated genetic polymorphisms, most of which
localize within intronic and intergenic regions where retroelement genes are located. Thus, the etiological factors of neuro-
degenerative diseases include genetic predisposition to the excessive activation of retroelements, aging, and viral infections,
thus causing pathogenic proteopathy and the aggregation of amyloid-B, tau protein, a-synuclein, TDP-43, and FUS. As a result,
these proteins lose their ability to inhibit retroelements by causing their excessive activation and an inflammatory immune
response to their transcripts. In turn, the expression products of polymorphic retroelements enhance the production of antiviral
proteins and their proteopathy and aggregation. A vicious circle develops that promotes the progression of the condition; this
circle may be broken by inhibitors of retroelements and specific microRNAs that may become the basis for targeted therapy for
neurodegenerative diseases. As such, these processes do not induce nucleotide DNA sequence damage; rather, they indicate
the epigenetic mechanisms of these diseases.
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B3auMocBs3b anureHeTMyecKux ¢akTopos
C peTpoTpaHCNO30HaMM B ITUONATOreHese
HeMpoaereHepaTUBHbIX 6onesHei

P.H. MyctaduH

BalKupcKuii rocynapcTBEHHbI MEAVLIMHCKUIA YHUBEpCUTET, T. Yda, Poccus

AHHOTALUA

MaToreHe3 HelpoaereHepaTUBHbIX Bosie3Hel CBA3aH C NpOTEMHONATMEN M NATONIOrMYeCKoM arperaumeil cneunduyeckux benkos:
npu 6one3un AnbureiiMepa B-amunonaa u Tay-6enka, npu 6onesnmn NMapukMHCOHa — a-CUHYKNEMHa, Npy 6OKOBOM aMMOTPO-
¢uueckom cknepose — TDP-43 n FUS. 3tonornyeckuMn daktopamu MoryT CyXUTb BUPYCHbIE MHGDEKLIMHK, YTO 00YCII0BNEHO
3alUMTHOW YHKLMEN onucaHHbIX 6eNKOB B OTHOLLEHMM crieLmdmryeckux BupycoB. [ocnenHue, B CBOKO o4epesb, CNocobHbI ycu-
JMBaTb SKCMPECCUI0 PETPO3NEMEHTOB. DM3MONOrNYECKOE CTapeEHUE TaKXKe ABNAETCA OAHON U3 NPUYMH HEMpOAEreHepaTUBHBIX
bonesHen, NOCKONBKY XapaKTepu3yeTCs aKTUBaLMEN PETPO3JIEMEHTOB U MPOTEMHONATUEN NEPEUMCIIEHHBIX NPOTMBOBUPYCHBIX
benkoB, KoTopbie B HOPMe MOLABSIOT IKCMPECCUI0 PETPO3NIEMEHTOB. 3Tnonorudeckumm daktopamu boxkosoro amuaTpodmye-
CKOrO CKJepo3a, bonesHu AnbureliMepa 1 [TapKUHCOHA CYMTAIOTCA acCOLMMPOBaHHBIE C HUMW NOTMMOP(U3MBI B reHoMe, Hosb-
LUMHCTBO M3 KOTOPbIX NIOKaNN30BaHbl B MHTPOHHBIX W MEXKTeHHbIX 006N1acTaX, rae pacnonoeHbl reHbl pETPO3NeMeHTOB. TakuM
06pa3oM, K 3TMoNorMyeckuM hakTopam HelipofereHepaTMBHbIX 3aD0NIEBaHUIA OTHOCATCA FEHETUYECKasN NPEAPACNONOMEHHOCTb
CNoCcOBHOCTY PETPO3NEMEHTOB K rMNEPaKTMBALMK, CTapeHUE U BUPYCHbIE MHBEKLMM, NOJ, BAUSIHAEM KOTOPbIX B NaToreHe3e pas-
BMBAETCS NPOTEMHONATUSA U arperaums B-amunonaa, Tay-0enka, a-cuHyknenHa, TDP-43 u FUS. B pesynbtate 3Tv benku yTpa-
UMBAIOT CNOCOBHOCTb MHIMBMPOBATL PETPO3NEMEHTBI, BbI3bIBAs MX MUMNEPAKTMBALMIO M BOCNANMTENBbHBIN MIMMYHHbI OTBET Ha UX
TpaHCKpUNThI. B cBOK 04epenb, MPOAYKTHI IKCMPECCUM M3MEHEHHBIX BCIEACTBME NONMMOpPdU3Ma PETPO3NIEMEHTOB YCUITMBAIOT
NPOLYKLMIO NPOTUBOBUPYCHBIX DEMKOB, MX NPOTEMHONATUIO M arperaumio. PasBuBaeTcs cnocobCTBYIOLWMIA NPOrpeccupoBaHuio
MaToforuv NOPOYHBINA Kpyr, BO3LENCTBME Ha KOTOPbINA C NOMOLLIbH MHTMBUTOPOB PeTpoasieMeHToB 1 cneumnduyeckux MuKpoPHK
MOXKET CTaTb OCHOBOW ANs TApreTHOM Tepanuu HepogereHepaTMBHbIX 3aboneBaHni. [0CKONBKY onMcaHHbIe NpoLecchl Npoumc-
xonAT 6e3 noBpexaeHn HyKneoTUaHbIX nocnegosarensHocten [JHK, ato cBuaetenscTByeT 06 anureHeTMYECKMX MeXxaHU3Max
AaHHbIX 3a60N1eBaHU.

KnroueBble cnoBa: a-cuHykneuH; B-amunoung; Bupycsl; MUKpoPHK; HellpofereHepaTuBHble 60N1€3HUM; pETPO3NEMEHTbI; Tay;
TDP-43.
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BACKGROUND

Neurodegenerative diseases (NDDs) are common, chron-
ic, and fatal conditions of the central nervous system. Their
risk increases with age, and aging [1-3] and viral infections
[4] have been implicated in their etiology. Alzheimer disease
(AD) is the most common NDD, affecting 5% of the European
population regardless of age and 22.53% of people aged =85
years [1]. The incidence of Parkinson disease (PD) increas-
es from 0.85% in the general population to 1.7% among in-
dividuals aged 80-84 years [3]. The average prevalence of
amyotrophic lateral sclerosis (ALS) worldwide is 4.42 cas-
es per 100,000 individuals, and this figure increases with age
[2]. Among individuals aged 66—90 years, ALS incidence is
22.84 per 100,000 men and 16.05 per 100,000 women [5]. The
pathogenesis of these NDDs is associated with the aggrega-
tion of specific misfolded proteins into ordered beta-layer-
rich and high-molecular-weight fibrils called amyloids. The
progression of the pathology is caused by the spread of am-
yloid fibrils to specific brain regions, which is characteristic
of certain diseases [4]. In AD, beta-amyloid (Abeta) fibrils ac-
cumulate extracellularly as senile plaques, whereas hyper-
phosphorylated tau protein accumulates intracellularly as
neurofibrillary tangles [1]. In the pathogenesis of PD, dopa-
minergic neuron degeneration in the substantia nigra of the
brain is attributed to alpha-synuclein (alpha-syn) accumula-
tion within these cells, which results in the formation of ag-
gregates known as Lewy bodies [4]. FUS proteinopathy and
the formation of TDP-43 protein aggregates in neurons of the
central nervous system occur in patients with ALS. This leads
to the death of upper and lower motor neurons and skeletal
muscle atrophy [6].

During normal aging of the human brain, retroelements
(REs), which are deoxyribonucleic acid (DNA) sequenc-
es within the human genome, undergo pathological activa-
tion. These elements are evolutionarily related to viruses and
can move to new loci through the “copy and paste” process
[7]. Consequently, RE expression products activate antivi-
ral interferon response and aseptic inflammation in the ag-
ing brain [7]. REs occupy almost half of all DNA sequences
in the human genome. These include long terminal repeats
(LTRs) of REs (9% of the human genome, including human
endogenous retrovirus [HERV]). LTR-free REs include long
interspersed nuclear elements (LINE) at 21%; short inter-
spersed nuclear elements (SINE), including Alu elements, at
13%; and SINE-variable number tandem repeats-Alu (SVA) at
0.13%, which together comprise a significant portion of the
human genome. Moreover, RE genes are primarily found in
intronic, regulatory, and intergenic regions [8], where most
single-nucleotide polymorphisms (SNPs) associated with
multifactorial diseases are located [9]. This pattern is also
characteristic of NDDs, as most of the polymorphic loci asso-
ciated with AD [10], PD [11], and ALS [12], which are etiolog-
ic factors of these diseases, are located in intergenic and in-
tronic regions.
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According to a recent meta-analysis, 23 different SNPs
associated with 15 genes are involved in the development of
AD. The most significant associations are observed in poly-
morphisms within genes such as CD33, which encodes a pro-
tein that activates protein tyrosine phosphatase; BIN (brid-
ging integrator), which encodes a nucleocytoplasmic adaptor
protein; and MTHFR, which encodes an enzyme that catalyzes
the conversion of 5,10-methylenetetrahydrofolate into 5-me-
thyltetrahydrofolate. Additionally, peculiarities in the associ-
ations of different SNPs have been observed among patients
with AD in different populations [10]. Genome-wide associa-
tion analyses have identified more than 90 independent risk
variants for PD. A large-scale meta-analysis of different po-
pulations identified 78 independent loci, including 12 poten-
tially novel ones associated with genes such as PPP6R2,
which encodes regulatory subunit 2 of protein phosphatase
6 involved in vesicle-mediated transport; EP300, which en-
codes the cellular p300 transcriptional coactivator protein
associated with the adenovirus E1A and functions as a his-
tone acetyltransferase; USP8 and USPZ25, which encode ubi-
quitin-specific peptidases; MYLK2, which encodes myosin
light chain kinase 2; FASN, which encodes fatty acid syn-
thase; PIGL, which encodes an enzyme to catalyze the second
step of glycosylphosphatidylinositol biosynthesis; /RS2, insu-
lin receptor substrate 2; SYBU (syntabulin), a part of the mo-
tor-adaptor complex of kinesin, which is crucial in antegrade
axonal transport; ADD] (adducin), a cytoskeleton protein;
PIK3CA (phosphatidylinositol 3-kinase); and MTF2, a pro-
tein that activates methylated histone and transcription co-
repressor binding [11]. ALS is associated with several genes,
including ACSL5, which encodes a long-chain acyl-CoA syn-
thetase; ERGIC1, which encodes a cyclic membrane protein
of the intermediate compartment of the endoplasmic reti-
culum and Golgi apparatus; FNBPI, a formin-binding pro-
tein; RAPGEF5, a member of the RAS proto-oncogene sub-
family; ATXN3 (ataxin-3); ATXNZ (ataxin-2); SOD1 (superoxide
dismutase-1); SETX (senataxin); SPG1 (spatacsin); VAPB,
a membrane protein; ANG (angiogenin); FIG4, a protein with
phosphoinositide phosphatase activity; OPTN (optineurin);
VCP (valosin-containing protein); UBQLNZ (ubiquilin 2); SIG-
MAR1 (sigma non-opioid intracellular receptor 1); CHMPZB,
heteromeric endosomal sorting complex; PFNT (profilin-1);
ERBB4, tyrosine-protein kinase receptor; hnRNPAT, en-
codes ribonucleoprotein; MATR3 (matrin-3); TUBA4A (tubu-
lin alpha-4A); ANXATI (annexin A11); NEKI, a serine-threo-
nine kinase that regulates the cell cycle; KIF54, a member
of the kinesin-5 family; C90RF72, a regulator of endosomal
trafficking; CHCHD10, a mitochondrial protein that maintains
cristae morphology; SQSTM1 (sequestosome 1); and TBK]
(TANK-binding kinase) [13]. Although the association of many
genes was identified in the described NDDs, the roles of tau
and Abeta proteins in AD [1], alpha-syn in PD [4], and FUS
and TDP-43 in ALS [6] have been established. Therefore, this
review focuses on the relationship between REs and these
proteins, which play a significant role in the development of
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NDDs. Regarding the genes associated with AD, PD, and ALS,
this review considers the importance of REs in the intronic
and regulatory regions of these genes. These regions are ac-
tivated by polymorphisms in their loci, which may elucidate
NDD development mechanisms.

The influence of SNPs associated with NDDs and loca-
lized in RE regions may be illustrated by the open reading
frame 1p (ORF1p)—a LINE1 retrotransposon protein. ORF1p
forms cytoplasmic aggregates and is similar to ribonucle-
ic acid (RNA)-binding proteins associated with neurodege-
neration [14]. The efficiency of retrotransposition and dy-
namics of protein aggregation are affected by certain amino
acid changes within the ORF1p protein. Key proteins in ALS
development co-localize with ORF1p-LINE1 ribonucleopro-
tein particles in cytoplasmic RNA granules. ALS-associat-
ed polymorphisms in intergenic and intronic regions, where
REs are located, may show a similar effect, enhancing RE
expression products to form TDP-43 aggregates [14]. There-
fore, NDD-associated polymorphisms may induce chang-
es in the expression and function of REs, which may inter-
act with Abeta, tau protein [15], alpha-syn [16], and TDP-43
[17]. This demonstrates the role of NDD-associated poly-
morphisms. Additional contributing factors include aging
and viral infections. Furthermore, RE activation may result
in an epigenetic imbalance in gene expression regulation in
the brain because REs are involved in epigenetic regulation
and memory formation [18]. These epigenetic factors include
DNA methylation, chromatin remodeling complexes, histone
modifications, and noncoding RNAs (ncRNAs). Changes in
these factors contribute to the development of AD [19], PD
[20], and ALS [21].

ROLE OF VIRAL INFECTIONS
IN THE ETIOPATHOGENESIS
OF NEURODEGENERATIVE DISEASES

The evolutionary relationship between REs and viruses [22]
may explain the mechanism of NDD development with re-
spect to the role of viruses as activators of REs and interac-
tions of REs with antiviral proteins. Abeta is an immune sys-
tem protein that protects against specific viral infections. It
accumulates in the brain in response to the spread of herpes-
viruses by binding to their surface glycoproteins [23]. More-
over, Abeta interacts with the human immunodeficiency virus
(HIV). The HIV transactivator of transcription protein binds to
Abeta, forming twisted and double-stranded fibrils that ag-
gregate into thick, unstructured filaments and homogeneous
amyloid fibrils in the brains of individuals infected with HIV
[24]. Human herpes virus 6 increases Abeta and tau expres-
sion and the proportion of their phosphorylated forms in hu-
man microglial cells [25].

PD is associated with infections caused by herpesviruses,
flaviviruses, influenza A viruses [4], and severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) [26]. Moreover,
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the influenza A HIN1 virus impairs proteostasis and alpha-
syn aggregation [27]. HIV induces alpha-syn accumulation in
neurons, elucidating the development of cognitive and motor
disorders in HIV-infected patients. The frequency of SNCA/
alpha-syn staining is higher in HIV-infected patients than in
healthy people of the same age [28]. Similarly, SARS-CoV-2
induces alpha-syn aggregation, contributing to PD develop-
ment by binding to the S1 protein and activating alpha-syn as
part of the immune response to infection [29].

Alpha-syn exhibits biophysical characteristics of antivi-
ral peptides and binds to virus-bearing vesicles. It promotes
neuronal resistance to viral infections by signaling the im-
mune system, attracting neutrophils and macrophages, and
activating dendritic cells [30]. In response to RNA viral infec-
tions, alpha-syn promotes interferon-stimulated gene ex-
pression in neurons. Alpha-syn accumulates in the nuclei
of interferon-treated human neurons. Alpha-syn expression
depends on interferon-mediated phosphorylation of signal
transducer and activator of transcription 2, which localizes
with alpha-syn after stimulation. Increased alpha-syn se-
rine 129 phosphorylation levels are found in the brain tissues
of patients with viral encephalitis caused by the West Nile or
Venezuelan equine encephalitis virus [31].

The roles of enteroviruses [32] and SARS-CoV-2 [33]
in TDP-43 aggregation and neurotoxicity have been deter-
mined. Additionally, the direct antiviral activity of TDP-43
against enteroviruses [34] and HIV [35] has been revealed.
In ALS, the antiviral response triggers FUS proteinopathy,
which is incorporated into stress granules. FUS aggregates
isolate the autophagy receptor optineurin and nucleocyto-
plasmic transport factors. Virus-activated interferon | pro-
motes FUS accumulation by increasing the stability of its
messenger RNA (mRNA). FUS-expressing cells become hy-
persensitive to double-stranded RNA toxicity [6]. Thus, the
above data indicate that Abeta, tau, alpha-syn, TDP-43, and
FUS are antiviral brain proteins. The expression of these
proteins and their associated proteinopathies and aggrega-
tions increase during viral infections (Fig. 1). Figure 1 shows
that certain viruses stimulate the expression of proteins
(such as tau, Abeta, alpha-syn, and TDP-43) involved in the
pathogenesis of NDDs and induce proteinopathy. These pro-
teins are characterized by antiviral inhibitory action against
specific viral infections.

ACTIVATION OF RETROELEMENTS
BY VIRUSES ASSOCIATED WITH
NEURODEGENERATIVE DISEASES

The associations between viral infections and AD, PD, and
ALS do not fully explain the complex pathogenesis of these
diseases. Viruses may trigger other processes that support
the progression of pathology in the brain [24]. These pro-
cesses were hypothesized to involve REs, whose expression
is increased by specific viruses. This increase in expression
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Fig. 1. Relationship diagram of pathogenic proteins in neurodegenerative diseases and viruses (ar-
rows indicate activation, the L sign indicates inhibition). HIV, human immunodeficiency virus.

causes proteinopathy of Abeta [24], tau protein [25], alpha-
syn [27], and TDP-43 [32, 33]. Therefore, in individuals with
a hereditary predisposition caused by polymorphisms in RE
genes that impair their function and expression [9-11], spe-
cific viruses promote proteinopathy and antiviral protein ag-
gregation and activate REs during aging. Aging is character-
ized by progressive RE derepression or the reactivation of RE
expression previously suppressed by epigenetic factors, re-
sulting in interferon activation and inflammation [7]. The lat-
ter creates a “vicious circle” as RE expression products ac-
tivate the production and aggregation of Abeta, tau protein
[15, 24], alpha-syn [16], and TDP-43 [37]. These protein ag-
gregates derepress REs, as they are normally involved in RE
silencing [15, 16, 36, 37]. Increased RE levels enhance the ex-
pression and aggregation of antiviral proteins, thereby con-
tributing to the progression of NDDs (Fig. 2).

Pathologically activated REs promote the expression,
proteinopathy, and aggregation of tau, TDP-43, alpha-Syn,
and Abeta proteins. These aggregated proteins exhibit inhi-
bitory function loss on REs. NDDs, neurodegenerative dis-
eases; SNPs, single-nucleotide polymorphisms.

Herpesviruses that are involved in the development of AD
by interacting with Abeta [23] and tau [25] also activate REs
[38]. HIV, which enhances Abeta aggregation, exerts an acti-
vating effect on REs [39]. These activated REs then increase
tau expression, which contributes to AD progression [15].
The evolutionary relationship between viruses and REs [22]
shows that Abeta, in addition to antiviral activity, is capable
of inhibiting RE expression, which is associated with the pro-
tective effect of the protein against foreign RNA. This is evi-
denced by the enhanced processing of ncRNAs from SINE B2
transcripts in the hippocampus of mice with pathological am-
yloid aggregates [40].

Viruses that stimulate alpha-syn expression in PD also
activate REs, as observed with HIV [39], influenza viruses [4],
and herpesviruses [38]. RE activation during viral infection is
associated with evolutionary relationships with viruses [22]

and involvement in interferon antiviral pathways [41]. A re-
view of scientific data highlighted the role of SARS-CoV-2
in activating REs that contribute to the neurological compli-
cations of coronavirus disease 2019 [42]. TDP-43 is an ex-
ample of the relationship between antiviral proteins and REs
in NDDs. Viruses that interact with this protein also activate
REs. This has been observed with HIV [39], influenza A virus
[41], SARS-CoV-2 [42], and enteroviruses [43]. RE expression
products induce the pathological conformation and aggrega-
tion of TDP-43 [17], impairing its ability to inhibit REs [44].
A similar effect occurs with TDP-43 loss [45]. However, nor-
mal TDP-43 inhibits REs [46].

ACTIVATION OF RETROELEMENTS IN
NEURODEGENERATIVE DISEASES AND
THEIR RELATIONSHIP WITH ANTIVIRAL
PROTEINS

The described mechanisms for RE participation in the patho-
genesis of NDDs—including the association of polymor-
phisms in RE gene sites and RE interaction with viruses that
cause proteinopathy and aggregation of antiviral brain pro-
teins—are confirmed by the presence of increased RE ex-
pression in NDDs and RE interactions with Abeta, alpha-syn,
tau, and TDP-43. HERV transcripts are significantly increased
in the brains of patients with tauopathy [47] and AD [48]. Fur-
thermore, tauopathies are associated with increased LINE1
and Alu expression in the brain [15]. Chromatin tags asso-
ciated with the tau protein have been identified in HERV-Fc1
loci [36]. Thus, normal tau can regulate RE expression in the
brain. However, in tau proteinopathy, this function becomes
impaired, leading to RE derepression and accumulation of
their transcripts and proteins.

In the brains of patients with PD, activation of the immune
cytokine network and increased toll-like receptor 3 levels
were observed in response to double-stranded RNAs, many
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Fig. 2. Diagram of the interactions of pathogenic proteins in neurodegenerative diseases, viruses, and retroelements.

of which are products of RE transcription. The antisense C3
complement oligonucleotide, which switches splicing and
promotes unproductive C3 mRNA splicing, has been shown
to prevent alpha-syn changes [44]. In PD, pathological al-
pha-syn aggregates (Lewy bodies) fail to inhibit RE expres-
sion, leading to their derepression and increased HERV levels
in the brain and blood of affected individuals [16]. A study of
the cerebral cortex of people who died of ALS revealed that
TDP-43 loss results in the overexpression of LINE1 and other
REs, as TDP-43 hinds directly to retrotransposon mRNA [37].
Studies have shown that polymorphisms in SVA distribution
influence, in trans, the expression of HLA (human leukocyte
antigens) and MAPT (microtubule-associated protein tau) in
the genomes of patients with ALS, both of which are involved
in the pathogenesis of this disease [50].

REs influence the aggregation of TDP-43, which plays
a crucial role in ALS progression. HERV activation substan-
tially increases the distribution of prion-like proteins in ALS-
modeled cell cultures [17]. Studies on RNA—protein interac-
tions and gene expression profiles have revealed extensive
binding of RE transcripts to TDP-43. A significant proportion
of REs were derepressed in ALS-model mice, indicating the
protective role of TDP-43 against RE activity [44]. Neurons
isolated from patients with ALS lacking TDP-43 exhibited in-
creased chromatin accessibility around LINE1, demonstrating
the role of TDP-43 in RE silencing at the transcriptional level
[45]. TDP-43 functionality loss may explain the decrease in
LINE1 retrotransposition-capable methylation detected in the
motor cortex of patients with ALS [51].

The role of TDP-43 in LINE1 inhibition has been studied
in embryonic stem cells and preimplantation mouse embry-
os. Functional analysis has revealed that TDP-43 interacts
with the LINE1 protein ORF1p, protecting the genome from
insertions [46]. In patients with ALS, disease progression
was associated with increased antibody titers against various
HERV-K envelope glycoproteins and TDP-43 epitope frag-
ments, with a positive correlation observed between them
[52]. The expression of HERV-K, whose Env protein promotes
neurodegeneration, was examined in cortical and spinal cord
neurons of patients with ALS and was not detected in healthy
individuals [53]. Experiments on Drosophila demonstrated
that ERVs stimulate human TDP-43 aggregation, which pro-
motes increased ERV expression [54].

In addition to interacting with antiviral proteins and form-
ing pathological conformations and aggregates, activated
REs contribute to inflammatory processes driven by interfer-
on activation within the vicious cycle of NDD progression [7].
These elements disrupt gene expression in the proximity of
introns where they are located. This disruption is particularly
significant considering their role as mobile elements in regu-
lating gene expression in the brain [55]. Furthermore, HERV-
K envelope RNA hinds to and activates human toll-like recep-
tor 8 in neurons and microglia, promoting neurodegeneration
[56]. The most abundant stimulators of interferon response
and subsequent inflammation in the brain in NDDs are LINE1
[57] and Alu [58]. In PD, Alu integration into mitochondrial ge-
nomes destroys these organelle populations in neurons, con-
tributing to neuronal dysfunction progression [59].
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PERSPECTIVES ON EXPOSURE
TO RETROELEMENTS IN
NEURODEGENERATIVE DISEASES

The etiological mechanisms of AD, PD, and ALS share com-
mon characteristics, including a vicious cycle involving REs
and antiviral proteins. Aging, viruses, and genetic predispo-
sition are the triggers of these diseases. Because REs con-
tribute to increased expression, proteinopathy, and aggrega-
tion of Abeta, tau, alpha-syn, FUS, and TDP-43, inhibiting REs
may be a promising treatment for NDDs. The role of REs in
ALS pathogenesis has been established; therefore, methods
to suppress RE activity using reverse transcriptase inhibi-
tors have been proposed for ALS treatment [60]. Antiretro-
viral therapy yields favorable results in treating ALS in HIV-
infected patients [61]. Considering that REs are activated by
epigenetic deregulation, the use of drugs that remodel chro-
matin, such as methotrexate [62] and remodulin (an N-acet-
yltransferase 10 inhibitor) [63], may be a feasible treatment
option for NDDs. Other proposed treatments include antibo-
dies against the Env protein of HERV-K to eliminate neuro-
toxicity [64] and antiviral drugs that inhibit prion-like protein
spreading by targeting HERV proteins [17]. These techniques
may be used to treat ALS, AD, and PD. The mechanisms by
which REs contribute to the pathogenesis of these diseases
are similar, as described in the present review.

However, nonspecific suppression of RE activity may be
insufficient, as demonstrated in patients with ALS who are
not HIV-positive [61]. Additionally, REs are crucial in the epi-
genetic regulation of gene expression during normal brain
development and function, including memory formation [55,
65]. Therefore, nonspecific inhibition of REs for NDD treat-
ment may be ineffective and dangerous due to the potential
development of adverse effects and exacerbation of cognitive
and memory impairments. Each NDD may be characterized
by the pathological activation of specific REs, as evidenced by
genetic studies identifying polymorphic loci associated with
NDDs [10-13]. Thus, a more effective approach to treating
NDDs may involve targeted therapy using specific microRNAs
to inhibit REs implicated in disease pathogenesis. Selecting
microRNAs that evolved from REs and are fully complemen-
tary to their sequences may be a strategy for suppressing
REs in NDDs [66].

CONCLUSION

Patients with AD, PD, and ALS exhibit significantly increased
RE expression in the brain, cerebrospinal fluid, and blood.
These findings support the hypothesis that a vicious cycle
of interactions between antiviral proteins (Abeta, tau, al-
pha-syn, and TDP-43), which are well-established contri-
butors to disease development, and REs is involved in the
progression of pathology. Specifically, a hereditary predis-
position associated with NDD polymorphisms in intronic and
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intergenic regions, where RE genes are located, influences
the activation of REs and their interaction with aggregation-
prone antiviral proteins. Moreover, the increased incidence
of AD, PD, and ALS in older and senile individuals confirms
the hypothesis, as aging results in RE hyperactivation, which
induces interferon and inflammatory processes. Proteino-
pathy of Abeta, tau, alpha-syn, and TDP-43, which tends to
aggregate, is also observed in physiological aging. Specific
viral infections induce NDDs by stimulating the expression
of antiviral proteins in the brain and their proteinopathy and
aggregation. However, the mechanisms involved in this pro-
cess are related to the interaction of evolutionarily related
RE viruses, which also stimulate the production and aggre-
gation of Abeta, tau, alpha-syn, and TDP-43. The aggregates
of these proteins fail to inhibit RE expression, resulting in
their derepression, as these proteins normally promote RE
silencing. This new perspective on the etiology of NDDs rec-
ommends the use of methods to suppress endogenous ret-
rovirus activity to treat AD and PD, as indicated for ALS ther-
apy. Targeted therapy using specific miRNAs that inhibit REs
involved in disease pathogenesis, but not in normal cogni-
tive processes and memory formation, may be a promising
and safe option.
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AOMOJHUTE/IbHAA UHOOPMALIUA

Bknap aBTopa. M.PH. — npoBeaeHue vccienoBaHms, pabota ¢ aHHbI-
MW, Hamy1caH1e YepHOBYKA, NEPECMOTP W PeflakTUpoBaHKe pyKonmucu. Ae-
TOp 0406pUN pyKonuch (Bepcuio Ans nybnmKaumm), a Takxe cornacuncs
HECTW OTBETCTBEHHOCTb 3a BCE acMeKTbl paboTkl, rapaHTUpys Haanexalllee
PacCMOTPEHME 1 peLLeHe BONPOCOB, CBA3aHHbIX C TOYHOCTbIO M 106poCo-
BECTHOCTbIO 1060 € yacTu.

JITUyeckasn aKkcnepTU3a. HemprmeHumo.

WcTouHukm dpuHaHcmpoBaHus. OTcyTCTBYHOT.

PackpbiTe MHTepecoB. ABTOp 3asB/sET 06 OTCYTCTBMM OTHOLLIEHUI, Ae-
ATENbHOCTM U MHTEPECOB 3a NOCNEAHNE TPM M0Aa, CBA3AHHbIX C TPETbUMM
JMLaMK1 (KOMMEpYECKUMU 1 HEKOMMEPYECKUMM), MHTEPECH! KOTOPbIX MO-
rYT BbITb 3aTPOHYTLI COEPHAHUEM CTaTbU.
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0B30PH!

OpuruHanbHocTb. [Tpy co3aaHmy HacTosLLen paboTbl aBTop He UCMoMb-
30Ban paHee 0nybsMKOBaHHbIE CBEAEHWS (TEKCT, MIMIKOCTPaLMK, laHHbIe).
JlocTyn K AaHHbIM. PeakuyoHHas nonuTKa B OTHOLLIEHUM COBMECTHOMO
1CMOb30BaHNA AaHHBIX K HACcTosALLe paboTe He MpYMeHUMa, HOBble AaH-
Hble He cobypanv v He co3aaBanm.

leHepaTUBHBLIA MCKYCCTBEHHbIA MHTENEKT. [1py C034aHUM HACTOoALLEN
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