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ABSTRACT

The structural integrity of the skeleton is ensured by the constant remodeling of bone tissue, which is based on the functioning
and interaction of osteolytic cells (osteoclasts) and bone tissue forming cells (osteoblasts/osteocytes). Despite the general
understanding that the degree of mineralization of the bone matrix determines the fragility of the skeleton, there is currently
insufficient information about its age-related changes associated with the functioning of these cells. The purpose of the review
is to evaluate existing data on age-related bone changes associated with the functional state of mesenchymal stem cells,
osteoblasts/osteocytes and osteoclasts. Inclusion criteria: randomized or non-randomized controlled studies examining age-
related bone change. A search for studies in the field of bone tissue condition was carried out in electronic scientific databases
Google Scholar, Medline, PubMed, Scopus, Web of Science and Cochrane Library by keywords and their combinations using the
AMSTAR 2 program. The selection of publications (59 out of 680 included) was carried out randomly, after which three authors
independently assessed their methodological quality. The main pathogenetic mechanism involved in bone loss with age is
a decrease in the formation of osteoblasts with impairment of their ability to osteogenic differentiation. Osteocytes in old age
are subject to excessive and prolonged stress, which causes unbalanced autophagy and apoptosis, which leads to changes in
their ability to deposit and mineralize extracellular organic matrix. With age, accelerated osteoclastogenesis occurs, mediated
by osteoblasts, which leads to increased expression of certain receptors at the level of bone stromal cells and osteoblasts.
The presented literature data demonstrate convincing evidence that an increase in bone resorption due to complex metabolic
processes with age occurs against the background of an increase in the number and activity of osteoclasts, apoptosis of
osteoblasts with a decrease in their metabolic activity, as well as a redistribution of osteogenic differentiation of mesenchymal
stem cells towards adipocytes. The results presented in the review can be used as a basis for developing diagnostic criteria for
identifying senile osteoporosis and the risk of fractures.
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KneToyHble MexaHu3Mbl BO3pacT-3aBUCUMOro
peMoaeiuposaHusa KOCTHOM TKaHM

H.T. lnexoBa, MN.A. KpuBonyuxkas, W.H. YepHeHko

TWUX0OKeaHCKUI rocynapCTBEHHbI MEAULIMHCKUA YHUBEpCUTET, . BnaausocTok, Poccus

AHHOTALMA

CrpyKTypHas LenocTHOCTb cKenleTa obecreyeHa NOCTOAHHLIM PEMOAENMPOBAHNEM KOCTHOM TKaHM, KOTOpPOe 0CHOBAHO Ha (yHK-
LIMOHWUPOBAHMM M B3aMMOAENCTBUM KIETOK OCTEONIMTUYECKUX (OCTEOKNACTbI) M GOPMUPYIOLLMX KOCTHYIO TKaHb (ocTeobnacTbl/
octeoumThl). HecMoTps Ha obluee NoHUMaHKe, YTo CTeNeHb MUHEPaNU3aLmMM KOCTHOO MaTpUKCa ONpeaenseT XpYnKocTb CKe-
NeTa, Ha HaCTOALLMI MOMEHT Hef0CTaTO4HO MHOPMALMK 0 ero BO3PACTHbIX U3MEHEHUAX, CBA3aHHbIX C PYHKLMOHUPOBaHWEM
LaHHbIX KneToK. Lienb 0630pa — oLeHKa CyLLecTBYIOLMX AaHHBIX 0 BO3PACTHBIX M3MEHEHUAX KOCTU, CBA3AHHBIX C GYHKLMO-
HaNbHbIM COCTOSHMEM ME3eHXUMHbIX CTBOJIOBbIX KNETOK, 0CTe06/1acToB/0CTEOLMTOB U OCTEOKNACTOB. Kputepumn BKIKOYEHMS:
paHOOMM3MPOBaHHbIE WU HEPaHAOMM3MPOBaHHbIE KOHTPONIMPYEMbIe UCCNef0BaHUSA, U3yYatoLLme BO3pacT-3aBUCKMOe U3Me-
HeHue KocTu. [oncK uccnefoBaHuUi B 061acTh COCTOSIHWS KOCTHOW TKaHM OCYLLECTBASNN B 3MIEKTPOHHbIX Hay4HbIX 6a3ax Google
Scholar, Medline, PubMed, Scopus, Web of Science n Cochrane Library no koyeBbIM cioBaM 1 UX COYETAHUAM, UCMONb3YS
nporpammy AMSTAR 2. Ot6op nybnmkaumii (13 680 BktodeHo 59) nponsBoannM ciyYaiHbIM 06pa3oM, NOC/e Yero He3aBUCUMO
TpW aBTOpa [aBaNM OLEHKY UX METOA0N0rMYecKoro Kayectea. OCHOBHOM NaTOrEHETUYECKMIA MEXaHW3M, Y4acTBYIOLLMIA B MO-
Tepe KOCTHOM Macchl C BO3PacToM, — CHUMEHWe 06pa30BaHus 0cTe0bNacToB € HapYLLEHMEM WX CMOCOBHOCTU K OCTEOrEHHOM
b depeHumpoke. OcTeouuMTbl B NOXKMIOM BO3pacTe NOABEPraloTcs YpesMepHOMY W NMPOAOMKMUTENBHOMY CTPECCY, KOTOpbIA
BbI3bIBaeT HecbanaHcMpoBaHHyI0 ayTodaruio 1 anonTos, YTo BEAET K U3MEHEHMHO UX CMIOCOBHOCTU K AeNOHMPOBaHUI0 U MUHEpa-
NIM3aLMM BHEKIIETOYHOO OpraHYecKoro MaTpukca. C Bo3pacToM NpoMCXOAMT YCKOPEHHBIN 0CTEOKNIACTOrEHES, OMOCPeAoBaHHbIA
ocTeobnacTamu, YTO NPUBOAUT K YCUNEHUIO IKCMPECCUW ONpeAEeNEHHbIX PELLENTOPOB Ha YPOBHE KOCTHBIX CTPOMAJIbHBIX KIETOK
1 octeobnacTo.. puBeaEHHbIE NUTEPATYPHbIE AAHHbIE JEMOHCTPUPYIOT yOeauTebHble A0KA3aTeNbCTBa TOMo, YTO YCUNEHUe
pe3opbLmMK KOCTW BCNEACTBME CIIOXHbIX MeTabonMyecKknx NpoLLeccoB ¢ BO3PACcTOM NPOUCXOAUT Ha (OHe MOBBILLEHUS KONWYe-
CTBa M aKTMBHOCTW OCTEOKJTACTOB, anonTo3a 0cTe0b1acToB Npu CHYKEHUW MX METaboNMUEeCKOoN aKTMBHOCTH, a TaKKe nepepac-
npeneneHus 0CTeoreHHoN aMddepeHLMPOBKY ME3EHXMMHBIX CTBOJIOBBIX KNETOK B HanpaBfieHUy aaunoumToB. M3noxeHHble
B 0630pe pesynbTaThl MOryT BbITb UCMO/b30BaHbI B KAYECTBE OCHOBbLI Pa3paboTky AMArHOCTUYECKUX KPUTEPUEB IS BbISIBNIEHMS
CEHWNBHOTO 0CTEOMNOPO3a M PUCKa NEPESTOMOB.

KnioueBbie cnoBa: peMoaennpoBsaHue KOCTU; CTapeHue; 0cTe06/1acTbl/0CTEOLUTLI; 0CTEOKNACTI; 0CTe0apTpuUT; XeMOKWUHbI;
LINTOKMHBI.
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The World Health Organization defines healthy human aging
as a continuous process of maintaining the functional viabi-
lity of the body [1]. Depending on the physiological age and
short-, medium-, and long-term influence of various factors,
bone tissue is constantly changing [2].

According to the Julius Wolff law, bones adapt to the de-
gree of mechanical load, and with its increase, the structure
of the inner spongy part is strengthened with subsequent re-
modeling of the cortical layer. Moreover, their integrity is de-
termined by the duration, magnitude, and speed of the forces
applied to it [2].

Bone tissue remodeling maintains the balance of calcium,
phosphorus, and other active components in the body, thus
ensuring the structural integrity of the skeleton. This process
is regulated by mechanical factors (e.g., physical activity) and
endocrine (such as parathyroid hormone, growth hormone,
estrogens, and calcitriol) and paracrine (insulin-like growth
factor) signals and mediators, such as transforming growth
factor, prostaglandins, nitric oxide, interleukin-1, interleu-
kin-6, tumor necrosis factor [3].

Remodeling is based on the functioning and interaction of
bone-forming (osteoblasts/osteocytes) and osteolytic (osteo-
clasts) cells. The activity of these cells is also under constant
control of both local and systemic regulatory factors [2]. De-
viation from the balance between the ratio of osteoblasts and
osteoclasts can lead to the loss of bone density, tendency to
fractures or, conversely, to its increase (osteopetrosis), and
development of compression syndromes [2].

AGE-RELATED CHANGES IN BONE
MATRIX PROPERTIES AND POTENTIAL

Despite the general understanding that the degree of bone
matrix mineralization determines skeletal fragility, current in-
formation on its age-related changes is insufficient [4, 5].

Bone matrix properties (tissue modulus, yield strength,
ultimate stress/strain, strain-to-fracture, workability to frac-
tures, and impact toughness) are assessed by testing, and
aging does not significantly degrade the elastic modulus of
bones [6]. However, in cortical bones of a person aged >30
years, the yield and tensile strengths decrease by approxi-
mately 1% and 2% per decade, respectively [7, 8], whereas im-
pact toughness, energy dissipation, and ultimate strain de-
crease by approximately 10%-15% per decade [7, 9].

Fatigue life capability decreases exponentially with age,
and bone exhibits reduced modulus and degradation profiles
[7,91. Under fatigue loading, if diffuse damage is formed and
local tissue rigidity is lost on the tensile side in young bones,
then linear microcracks are formed, and rigidity is disrup-
ted on the compressive side in old bones [7]. The tendency
of aging bones to form linear microcracks, rather than dif-
fuse ones, makes a significant contribution to the bone matrix
quality and age-related fragility of the skeleton [7].

Type | collagen, the most common protein in the human
body, is modified in the reaction of nonenzymatic glycation
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(Maillard reaction) with the formation of cross-links between
reducing carbohydrates (glucose, fructose, etc.) and free ami-
no groups. Such bonds within and between molecules con-
tain pentosidine, carboxymethyl lysine, carboxyethyl lysine,
crossline, and vesperlysine.

With age, advanced glycation end products accumulate as
a result of the long half-life of collagen, which affects bone
fragility [7, 10]. This accumulation also affects bone fracture
resistance and disrupts the nanoscale mechanisms of colla-
gen deformation and energy dissipation. In addition, the main
pattern of increasing bone fragility is an increase in fibril-
lar collagen stiffness and a loss of its induced plasticity with
the accumulation of advanced glycation end products [5].

Because bone mass decreases significantly in older
people, particularly after menopause in women, it becomes
a decisive factor in skeletal fragility and bone fractures [11].
Currently, many genetic studies have focused on deciphering
the relationship between genes and bone mass or microar-
chitecture [12]. Without cellular components, bone tissue is
deemed a biomaterial that consists of minerals, collagen, wa-
ter, and a small amount of noncollagen proteins [11]. Bone
minerals consist of weakly crystallized carbonate apatite and
become longer and stiffer with age, which affects the reduc-
tion of the ultimate bone deformation and strength [13—-15].

With age, the content of the bone matrix and degree and/
or nature of cross-links between and within collagen fi-
bers change, resulting in a loose tissue structure. Moreover,
the amount of water, which constitutes 10%—-20% of the cor-
tical bone volume at a young age, decreases by 40% at 80
years [11, 16].

Moreover, a fracture at any site increases the risk of
a subsequent fracture at any other site, which emphasizes
the importance of non-mass factors, including the disruption
of the bone architecture, changes in the bone mineral and ma-
trix, delayed recovery of fatigue microdamage and excessive
metabolism, but most importantly, the loss of osteocyte via-
bility with age [16].

Conversely, noncollagen proteins such as osteocalcin and
osteopontin also affect the properties of the bone matrix, re-
gulating the size, shape, and orientation of crystals, replacing
carbonate in the crystal lattice or changing mineral formation
on the collagen framework [17].

The properties of the bone matrix are regulated by osteo-
blasts, osteocytes, and osteoclasts; however, their role is very
specific because they participate to varying degrees in aging
and age-related bone destruction [18]. Osteoblasts initiate
bone matrix formation, and their reduced counts caused by
decreased differentiation of bone marrow mesenchymal stem
cells (MSCs) in them or increased apoptosis, or impaired ad-
hesion to the bone surface with decreased mineralization can
disrupt tissue formation [19].

Compared with osteoblasts and osteoclasts, osteocytes
embedded in the bone matrix directly interact with it, forming
a dendritic network of extensive area, and it is modified in re-
sponse to endocrine, paracrine, and mechanical stimuli [18].
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signals

Osteocyte
Osteocyte

Osteocyte

Preosteoclasts

Osteoblasts

REST PHASE

Resting osteocytes and covering
cells on the bone surface

Fig. 1. Phases of the bone remodeling cycle

A study of age-related bone tissue aging using ribonucle-
ic acid sequencing revealed transcriptomic changes associ-
ated with genes encoding extracellular matrix organizer pro-
teins—collagen fibrils [20].

CELLS IN BONE TISSUE REMODELING

The bone remodeling cycle includes activation, resorption,
reversion, bone formation (mineralization), and rest [20]. In
stage 1 of activation, stimulating signals (bone load, para-
thyroid hormone, calcitriol, interleukin-1, interleukin-6, and
prostaglandins) are recognized by osteocytes located in
the bone matrix, followed by signal transmission to osteo-
blasts covering the bone tissue surface (Fig. 1).

In response to biologically active components synthesized
by osteoblasts (signaling proteins, monocyte colony-stimu-
lating factor, and nuclear factor-kB ligand activator), cells of
the monocyte—macrophage lineage migrate to the bone sur-
face and then proliferate and differentiate into multinucleated
osteoclasts. Hormonal signals directly or indirectly influence
the activity and interaction of osteoblasts and osteoclast pre-
cursor cells, which can be a prerequisite for various patho-
physiological consequences [21].

Osteoblasts also produce metalloproteinase enzymes that
destroy the surface protein layer and noncollagenous proteins
of osteoblasts (osteocalcin, sialoprotein, osteopontin, and
Gla-protein matrix), which prepares the bone surface for os-
teoclast attachment. In the resorption stage up to 30-40 days,

Secretion of enzymes REVERSION PHASE
by osteoclasts to
destroy the bone Apoptosis Mesenchymal

matrix of osteoclasts

stem cells

Osteoclasts

FORMATION PHASE

Formation of a layer of osteoblasts at the bottom of the
lacuna, which secrete molecules that form the organic basis
of the bone matrix and mineralization regulators

osteoclasts secrete enzymes that destroy the bone matrix, re-
sulting in lacuna formation with a depth of 60 um in young
people, whereas in older people, its size is reduced to 40 ym
while calcium and phosphates enter the bloodstream [22].

In the reversion stage, osteoclasts undergo apoptosis and
are replaced by mesenchymal germ cells, preosteoblasts.
Subsequently, bone formation is characterized by the forma-
tion of a layer of differentiated osteoblasts at the bottom of
the lacuna, which secrete molecules that make up the organic
basis of the bone matrix and mineralization regulators, name-
ly, collagen type |, osteocalcin, osteonectin, and osteopontin.
Matrix mineralization is implemented by the precipitation of
calcium and phosphate from the bloodstream [23].

At the final stage, osteoblasts transform into resting os-
teocytes and covering cells on the bone surface until the next
remodeling cycle [21]. In general, the bone tissue remode-
ling cycle normally takes approximately 150 days and ends
with the filling of the resorptive lacuna with a new matrix [23].
Under pathological conditions, for example, in osteoporosis,
the resorptive lacuna is not completely filled, which leads to
a loss of bone mass with each remodeling cycle [24].

In the compact bone, remodeling occurs in tunnels (Ha-
versian canals) formed by the resorptive cone of osteo-
clasts that remove old bone tissue, followed by the formation
of a closing cone consisting of osteoblasts and the filling of
the space with a new matrix [25].

Normally, the remodeling cycle on the trabeculae surface
lasts for approximately 200 days, and that in compact bone
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Fig. 2. The main changes in bone cells that occur in old age; ATP — adenosine triphosphate

for 120 days [26]. On average, approximately 30% of trabe-
cular and 3% of compact bone undergo remodeling in the hu-
man body annually [27]. In childhood and adolescence, osteo-
genesis prevails, and bone mass increases by 8% annually.
In adults, the remodeling stages are balanced, which allows
maintaining the constancy of the structure [27]. After the age
of 40 years, resorption begins to prevail over bone forma-
tion, which results in a gradual decrease in bone mass and
strength.

On the periosteum surface, a positive balance between
the remodeling stages is maintained throughout life. They
are balanced on the surface of the Haversian canals, and
a negative balance dominates on the endo-osseous surface.
This causes thinning of the cortical layer and rarefaction of
the spongy bone. With an increase in age by 20 years, with
the same bone mineral density, the risk of fractures increa-
ses four times [27].

MSCs

The bone remodeling cycle begins early in embryonic life
and depends on the interaction between two cell lines: mes-
enchymal and hematopoietic. Stromal non-hematopoietic
MSCs are localized in the bone marrow, periosteum, vas-
cular wall, adipose tissue, muscle, tendon, peripheral cir-
culation, skin, and dental tissues. They can self-reproduce
and differentiate into various types of cells, such as chon-
drocytes, myocytes, adipocytes, and osteoblasts, partici-
pating in the regeneration of mesenchymal tissues, such as

the bones, cartilages, ligaments, tendons, muscles, and adi-
pose tissues [2].

Long-lived MSCs are those from which osteoblasts (lit-
tle-known periosteal cells) and syncytium-lining resident ter-
minally differentiated cells (osteocytes) originate. These cells
are located in the bone marrow and spongy bones and are
crucial in maintaining the dynamic balance of bone tissue, its
resorption, and formation. Osterix, Runt-protein-related tran-
scription factor 2 (RUNX2), and transcription factor P (FOXP)
are the main factors involved in the differentiation of MSCs
into osteoblasts [2].

A study proposed the identification of self-renewing mul-
tipotent human skeletal MSCs by the presence of expres-
sion of receptors for the integral membrane protein podo-
planin type | and differentiation clusters CD73 and CD164 in
the absence of CD146 molecules [28]. These cells are isolated
from the adipose stroma of fetuses and adults when treated
with bone morphogenetic protein 2 and can expand locally at
the site of bone damage [28].

With age and in degenerative musculoskeletal (joints and
bones) diseases, the regenerative capacity of MSCs is lost or
redirected to the formation of other nonfunctional cell types,
such as adipocytes and fibroblasts (Fig. 2) [29].

Increased differentiation of MSCs into adipocytes and de-
creased count and functionality of osteoblasts are the main
factor involved in the pathogenesis of osteoporosis [30, 311.
Bone marrow fat cells have a special metabolism that de-
pends on the lipolysis of their lipids inside them, and by re-
leasing free saturated fatty acids, they negatively affect

DOI: https://doi.org/10.17816/KMJ632264



OB30PHI

the bone marrow. Palmitate is one of the most toxic and in-
tensively secreted free fatty acids, and it is directly involved in
bone destruction during aging by toxic effects on both osteo-
blasts and osteocytes [32].

With age, the expression levels of RUNX2 and erythroid
nuclear factor 2 (NRF2) receptors on the surface of MSCs de-
crease, whereas conversely, the content of the differentiation-
stimulating peroxisome proliferator-activated receptor-y co-
activator 1-a increases [33]. The latter serves as a major
regulatory factor for the adipogenic differentiation of MSCs
and can inhibit osteoblast activity by blocking the expression
of nuclear binding factor a, [33].

On the contrary, a decrease in FOXP levels directly affects
MSCs, leading to increased adipogenesis, decreased osteo-
blast formation, and finally bone structure degradation. Other
metabolic changes in MSCs in old age include a decreased
response to bone morphogenic protein and a decrease in
the levels of alkaline phosphatase, osteocalcin, and type | col-
lagen secretion (Fig. 2).

Finally, yet importantly, osteoblast inactivation and sti-
mulation of medullary adipose tissue formation are influ-
enced by the Wnt signaling pathway, which is downregulated
in old age (Wnt10b pathway), and MSC telomere dysfunction,
which induces apoptosis by stimulating the proapoptotic pro-
tein P53/P21 ratio. In this case, the expression of the osteo-
blastic transcription factor Runx 2 is suppressed, which in-
hibits the transformation and differentiation of MSCs into
osteoblasts, leads to a decrease in bone mass, and may be
one of the causes of senile osteoporosis [34].

Thus, MSCs have therapeutic potential for the develop-
ment of new clinical strategies to combat effectively con-
genital and age-related musculoskeletal disorders. Unfortu-
nately, despite the use of these cells in clinical practice as
injections for the treatment of some degenerative diseases,
most of their anti-aging and regenerative potential is still un-
confirmed [35].

OSTEOBLASTS/OSTEOCYTES

MSCs differentiated into osteoblasts that fill the Howship la-
cunae, producing new collagen and minerals. These specia-
lized bone-forming cells express parathyroid hormone re-
ceptors and synthesize osteoclastogenic factors, bone matrix
proteins, and bone mineralization elements [36].

Osteoblasts include immature, intermediate differenti-
ation, and mature cells, with maturation stages influencing
their functional contribution to bone remodeling. Immature
osteoblasts are thought to direct osteoclastogenesis, where-
as mature osteoblasts perform matrix production and mine-
ralization functions [37].

After performing their required functions, osteoblasts be-
come either osteocytes (bone surface lining cells) or under-
go apoptosis, which is important in age-related bone loss and
osteoporosis [37]. Osteoblast apoptosis via the intracytoso-
lic mechanism is induced by reactive oxygen species (R0S),
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derivatives of nicotinamide adenine dinucleotide phosphate
oxidase, with depolarization of the mitochondrial membrane
potential under the influence of oxidized proteins, which ulti-
mately leads to osteopenia and bone microstructure destruc-
tion [37].

Thus, the main pathogenetic mechanisms involved in bone
loss are a decrease in osteoblast formation with a disruption
of their ability to deposit and mineralize extracellular organic
matrix, as well as increased apoptosis and dysfunctional au-
tophagy (Fig. 2).

During bone formation, a subpopulation of osteoblasts
undergoes terminal differentiation and is absorbed by unmi-
neralized osteoid, and after its mineralization, differentiates
into osteocytes. The latter constitute 90%—-95% of all bone tis-
sue cells, are enclosed in fluid-filled lacunae, and have long
dendritic processes that extend along tunnels within the mi-
neralized matrix, forming a network [38].

The lacuna—canalicular system is necessary for the nor-
mal flow of tubular fluid, which, in addition to its impor-
tant role in bone nutrition, at times of mechanical loading, is
a stimulus for osteocytes mediating mechanotransduction. As
the functional syncytium of osteocytes with cells of the vascu-
lar surfaces of bones (osteoblasts or bone shell cells), stro-
mal and endothelial cells is the main cellular system.

Within the system, the interactions of osteocytes depend
on the type of signals (metabolic or mechanical) through vo-
lume and/or conductive transmission. These cells are con-
nected to each other by various connections, among which
gap junctions within the matrix allow them to act in a neu-
ronal-like manner. The maintenance of skeletal and miner-
al homeostasis as mechanosensors is attributed their abi-
lity to convert a mechanical stress signal into a biochemical
one, triggering/modulating the response of the bone matrix
through effector cells (osteoblasts and osteoclasts) [39].

The osteocyte-secreted regulator of skeletal metabo-
lism protein sclerostin, which is a bone formation inhibitor
by stimulating cell apoptosis, is also involved. These cells are
critically involved in bone remodeling and mineral homeosta-
sis both inside and outside the matrix microenvironment and
are currently considered from the standpoint of endocrine
function [40].

In addition to collagen and sclerostin, osteocytes secrete
an important endocrine fibroblast growth factor-23, influ-
encing phosphate metabolism regulation. Normally, osteo-
cytes modulate osteoblast activity via the Wnt signaling path-
way by secreting this protein, whereas osteoclast activation
is achieved by secreting the activator of nuclear factor-«B li-
gand and monocyte colony-stimulating factor. Nitric oxide
(NO), bone morphogenic proteins, and prostaglandin E2 are
molecules produced by osteocytes and involved in bone ho-
meostasis [41].

Osteocytes participate in bone mineralization and cal-
cium phosphate metabolism by secreting proteins such as
dentin matrix acidic phosphoprotein 1, bone sialoprotein,
and fibroblast growth factor-23. These cells also express
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the phosphate-regulating gene with homology to endopep-
tidases on the X chromosome and matrix extracellular phos-
phoglycoprotein [42].

During normal skeletal loading and age-related fatigue,
the osteocyte network is integral to the transmission of me-
chanical stress and associated microdamage to mineralized
bone (microscopic cracks or internal fractures) [43]. They can
remove perilacunar matrix (osteolysis) and influence systemic
mineral homeostasis with the release of calcium into the sys-
temic circulation. Through receptors for parathyroid hormone,
its soluble ligands, related peptides, sclerostin, and dentin
matrix protein, these cells induce perilacunar osteoclast re-
sorption [44].

Under certain circumstances, such as during exposure to
calcium-requiring conditions, osteocytes express osteoclast
markers such as tartrate-resistant acid phosphatase, cathep-
sin K, and carbonic anhydrase 2, triggering local deminera-
lization and proteolysis of the lacunar and pericanalicular
matrix [45]. Genetic studies of the dynamics of collagen gene
expression in osteocytes during incorporation and mineraliza-
tion into the bone matrix have demonstrated their involvement
in changes in aging-related bone properties [46].

With age and in some pathologies, such as osteoporosis,
when replacing old or damaged bones with new bones, an
imbalance toward resorption is determined, which leads to
a loss of mass, and in this case, osteocytes acquire osteo-
clast functions that atypical for them. Unlike short-lived os-
teoclasts (several days or weeks) and osteoblasts (several
months), osteocytes live up to 50 years, and their death de-
pends on the skeletal age [16]. Moreover, osteocyte apoptosis
is the main factor in the decrease in bone strength with age
(Fig. 2). Increased osteocyte death is associated with patho-
logical conditions, such as aging, excessive mechanical sti-
mulation, bone fatigue/microdamage, unloading/nonuse, es-
trogen and androgen deficiency, and inflammation [47].

In turn, accelerated apoptosis is induced by high levels of
cortisol, intracytosolic increase in the formation of ROS and
nitric oxide with the accumulation of molecular structures as-
sociated with damage, release of large amounts of adenosine
triphosphate, and impaired autophagy [47]. Because of acce-
lerated apoptosis of osteocytes, empty lacunae are filled with
minerals (micropetrosis, which presumably serves as a com-
pensatory mechanism for bone aging) [48].

The characteristic reduction of osteocytes and their net-
work during aging leads to a sharp reduction in the cell sur-
face, which is crucial for the efficient metabolism of nutrients,
oxygen and viability of cells that provide mechanosensitivity
and mechanotransduction of bones [40].

Oxidative stress is an independent risk factor for the de-
velopment of dysfunction of bone homeostasis. It affects os-
teoblast-induced osteogenesis and osteoclast-induced os-
teoclastogenesis, thereby inducing bone diseases, namely,
osteoporosis [32].

Osteocyte autophagy is @ mechanism by which cellu-
lar debris is transported to lysosomes for degradation. It is
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aimed at eliminating damaged organelles and proteins, and
has a critical effect on the differentiation, apoptosis, and sur-
vival of bone cells, including bone marrow stem cells, osteo-
blasts, osteoclasts, and osteocytes. High levels of ROS due to
oxidative stress induce autophagy to protect cells from da-
mage or apoptosis, but unfortunately, this cellular function
declines with age [49].

Pathways, such as ROS/FOX03, ROS/AMPK, ROS/Akt/
mTOR, and ROS/JNK/c-Jun, are also involved in the regulation
of osteoblast, osteocyte, and osteoclast autophagy. Converse-
ly, the initiation of excessive oxidative stress with activation of
the p53 gene, mitochondrial membrane disruption, damage
to deoxyribonucleic acid, and release of cytochrome C leads
to the induction of intrinsic apoptotic mechanisms. Loss of
dendrites triggers osteocyte death, resulting in the formation
of dead or osteonecrotic bone. This damage does not heal
through corrective remodeling and stops responding to me-
chanical loading [50]. Thus, osteocytes in old age are con-
sidered exposed to excessive and prolonged stress, which
causes unbalanced autophagy and apoptosis.

OSTEOCLASTS

The precursors of osteoclasts are mononuclear hematopoi-
etic cells of myeloid origin, with predominant formation in
the bone marrow. During injury and resorption, they are at-
tracted to the bone surface by chemokines and other factors,
including sphingosine-1-phosphate (Fig. 1) [16].

RAF6 factor, which binds to the tumor necrosis factor re-
ceptor, plays an important role in activating signaling path-
ways for the formation of multinucleated cells, osteoclasts,
from myeloid precursors. Subsequent differentiation of os-
teoclasts depends on four main signaling pathways, namely,
through the activation of proto-oncogenic tyrosine protein ki-
nase, protein kinase inhibitor IkB kinase, extracellular signal-
regulated kinase, and c-Jun-N-terminal kinase [51]. In ad-
dition, osteoclast-specific transcription factors such as Fos,
p50, or nuclear factor of activated cytoplasmic T cells 1 may
function as stimuli [29, 51].

Monocyte colony-stimulating factor, receptor for tran-
scription nuclear factor-kB ligand, and cytokines produced by
various cell types, including the osteoblast lineage, is ano-
ther important pathway of osteoclast differentiation and acti-
vation [52]. Binding of monocyte colony-stimulating factor to
c-Fms receptors on the surface of preosteoclasts increases
RANK expression.

Multinucleated osteoclasts are short-lived cells (2-4
weeks). Upon attaching to the bone surface, they begin to
function (Fig. 1). These cells contain lysosomal enzymes and
hydrogen ions that can degrade the bone matrix, which con-
sists of inorganic (calcium phosphate crystals, and hydro-
xyapatite) and organic (collagen, proteoglycans, and gly-
coproteins) parts. During resorption, areas of bone matrix
“exhausted” by osteoclasts (Howship lacunae) remain. As
cells of the mononuclear macrophage lineage, osteoclasts
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can enter the “reverse” phase, during which the decomposi-
tion and processing of organic material of the bone matrix
continues with the simultaneous release of growth factors to
initiate its new generation [16].

Osteoclasts and their precursors regulate immune re-
sponses, formation and functions of osteoblasts through di-
rect intercellular contact via receptors for ligands of ephrin
proteins (eph receptors), plexins (receptors for semaphorins),
and through clastokine expression [51, 53]. Thus, osteoclasts
serve as immune cells that are not only significant in bone tis-
sue resorption but also function as regulators of the body's
defense [54, 55].

Old age is characterized by increased bone metabolism,
with increased counts and activity of osteoclasts. Accelerat-
ed osteoclastogenesis mediated by osteoblasts occurs, which
increases the expression of monocyte colony-stimulating fac-
tor and activator of nuclear factor-kB ligand at the level of
bone stromal cells and osteoblasts [29]. Other important fac-
tors associated with aging that contribute to osteoclastogen-
esis and bone resorption and loss include extracellular matrix
changes, microfractures, decreased mechanical loading, in-
creased inflammation, sclerostin production, decreased tes-
tosterone and estrogen levels, secondary hyperparathyroid-
ism and increased expression of c-Fms receptors, RANK, and
activator of nuclear factor-kB ligand [56].

The deficiency of estrogen causes an increase in the se-
cretion of proinflammatory cytokines such as interleukin-1B,
tumor necrosis factor-a, interleukin-6, and transforming
growth factor-, which modulate the RANK signaling path-
way, thereby stimulating the formation and activation of os-
teoclasts [57, 58]. Such cells are involved in extracellular ma-
trix degradation in older people, who experience a significant
increase, up to 300%, in the B-isomerization of C-telopeptide
of type I collagen [59, 60]. Osteoclasts also produce scleros-
tin, which may contribute to impaired bone formation in old
bones [45].

Among the major bone cell types, osteoclasts require
very low ROS levels for differentiation and function. In
the older people, osteoclast apoptosis decreased because of
the loss of caspase 2 enzyme activity caused by oxidative
stress [25, 60].
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With age, bone tissue remodeling is disrupted, its resorption
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tions, with old age considered an independent risk factor [2].
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cellular apoptosis, which also leads to bone loss [50].
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