К учению о функции желудочной клетки, исследованной по методу проф. С. С. Зимницкого, при сердечных и почечных заболеваниях.

Ординатора Л. И. Виленского.

Известно, что для правильной жизнедеятельности организма необходима связь между отдельными органами, что нарушение функций важных для жизни отдельных частей организма может в корне подорвать его жизненные процессы. Еще со времён Галена создавались гипотезы, выявляющие взаимную зависимость между отдельными частями организма.

Сердечные и почечные заболевания относятся к числу тех болезней, которые происходят не только местное поражение отдельных органов, но и обусловливают глобальную пертурбацию всего организма: при них имеют место отеки лица, конечностей, полостей, изменяется коллоидный состав тканей, ослабляется коллоидное давление (Фохт), нарушаются состав крови и резистентность красных кровяных шариков (Шевченков), происходят изменения в содержании хлора и азота и неравномерное их распределение в организме, — если ткани нормального человека содержат обычно RN в 10 раз больше, чем их кровь (в тканях 0,20 — 0,40%, в крови 0,020 — 0,040%), то при почечных заболеваниях (урезия) клетки тканей организма постепенно теряют возможность удерживать азотистые шлаки, и потому содержание RN в крови, несмотря даже на недостаточный подвоз азотистых веществ извне, может при них быстро и сильно повышаться (Лах и Робони); содержание хлора, наоборот, увеличивается в тканях, а в крови уменьшается (Вейл). Сердечные и почечные заболевания в известной стадии своего развития вызывают, далее, диапетические явления, растяжения желудочно кишечного тракта, поносы, реже запоры, иногда кишечные кровотечения. Причиной этого явления в одних случаях (сердечные заболевания) являются засони печени, вследствие которых наступает плохое опорожнение
портальной вены и ее разветвлений, и других — патологическое состояние железистых элементов слизистой оболочки желудка, развивающееся вследствие апидоза, вмешения концентрации крови и тканей и асфиксия (при сердечных заболеваниях).

С целью заглянуть в интимную сторону состояния желудочной клетки при вышеуказанных заболеваниях, мы, по предложению проф. С. С. Зимницкого, изучили функцию этой клетки при сердечных и почечных заболеваниях, пользуясь методом, им предложенным (см. Врачебная газета, 1922, № 7). Исследование производилось у компенсированных и некомпенсированных больных. Больные исследовались в самом начале поступления, когда они находились в тяжелом состоянии (слабые отеки), затем 2—3 раза во время схождения отеков и, наконец, при восстановлении полной компенсации. Метод исследования заключался в следующем: у испытуемого больного натощак, через введенный в желудок мягкий тонкий зонд Biondi-Einhof'а с каучуковой оливой с отверстиями, выкачивалось находящееся в желудке содержимое, затем больному давали 200 куб. см. мясного теплого бульона, и через каждые 15 минут добавлялся пирипем Recor'dа, по 5 куб. см. желудочный сок, в котором определялись количество свободной соляной кислоты и общая кислотность, затем, по прошествии 60 минут, выкачивалось все содержимое желудка натощак, и давалось второе подкармливание в виде 200 куб. см. того же мясного бульона, после чего исследование велося в течение часа (через каждые 15 мин., как после первого завтрака).

Принимая во внимание, что при помощи тонкого зонда мы выходим из-под той части желудка, куда введен зонд, желудок же имеет далеко неоднаковую кислотность в различных его отделах, мы у одного и того же больного вводили тонкий зонд всегда на одинаковую глубину. Принимая во внимание закон постоянства % содержания HCI в выделении желудочных клеток и закон саморегуляции желудка, можно сказать, что кислотность является проявлением функции желудочной клетки, как выражаясь суммы физиологических процессов его. Поэтому, определяя кислотность, мы выясняем и функцию желудочной клетки.

Производя наблюдения над 30 сердечно-почечными больными в различных стадиях из заболеваний, мы могли установить, что у сердечных больных в состоянии компенсации желудочная клетка работает нормально; кислотность желудочного сока после первого завтрака у них несколько превалирует над кислотностью после второго завтрака, как и бывает в норме. У сердечных больных с явлениями decompensatio cordis мы наблюдаем, напротив, что желудочная клетка совершенно не реагирует, или же реагирует очень слабо, на первый и второй раздражитель: она находится в состоянии сильного угнетения, функционального топорна; после и первого, и второго завтрака у тяжелых сердечных больных с сильными отеками количество свободной соляной кислоты в желудочном селе равно 0, общая кислотность стоит на низких цифрах. После того, как сердечная деятельность восстанавливается, по мере исчезновения отеков, желудочная клетка, находящаяся в состоянии асфиксии, возвращается постепенно к нормальному состоянию, и кислотность после второго раздражителя описывает несколько превышать кислотность после первого раздражителя.

Вот пример нормальной функции желудочной клетки при состоянии компенсации сердечной деятельности.
<table>
<thead>
<tr>
<th>Фамилия больного и время исследования</th>
<th>Вес больного</th>
<th>Диагноз болезни и краткие сведения о больном</th>
<th>Последование</th>
<th>1 завтрак</th>
<th>2 завтрак</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-н. 10/VIII 22 г. 3 п. 20 ф.</td>
<td></td>
<td>Insuff. vaivulae mitralis, myocarditis.</td>
<td>Через</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Больная поступила с жалобами на сердцебиения и одышку. Отеков нет.</td>
<td>15 м.</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Со стороны сердца: левая граница на 1 палец кнаружи от linea mamm. sinistra, правая по linea stern. sin.; наверхуше синотомический шум, акцент второго тона.</td>
<td>30 м.</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>149</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166</td>
<td>218</td>
</tr>
<tr>
<td>25/VIII 22 г. 3 п. 17 ф.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

А вот пример функции желудочной клетки, патологически измененной вследствие декомпенсации сердца и постепенно приходящей к норме:

Р-н. 13/I 23 г. 3 п. 27 ф.		Stenosis ostii venosi sinistri, decomposatio cordis, hydrops, anasarca, ascites. В V межреберье, tremissement cattaire, левая граница сердца на 2 ст. кнаружи от linea mamm. sin., правая по linea mediana, в легких застойные хрипы.	Через		
			15 м.	0	0
			30 м.	0	0
			45 м.	0	0
			60 м.	0	0
				0	0
				0	13

1/I 23 г. 3 п. 10 ф.		Больная за две недели потеряла в весе 17 ф., отеки совершенно исчезли, состояние хорошее.	Через		
			15 м.	20	36
			30 м.	30	50
			45 м.	29	45
			60 м.	42	54
				121	185

У почечных больных мы видим, что клетка под влиянием первого раздражителя быстро приходит в состояние возбуждения, но затем быстро угомолает, вследствие чего кислотность после первого раздражителя значительно превалирует над кислотностью после второго раздражителя: мы имеем, таким образом, астеническое, лукольное состояние желудочной клетки. После исчезновения отеков желудочная клетка приходит к норме, и кислотность после второго завтрака начинает несколько превышать кислотность после первого (т. назыв. нозосекретия).

Пример:
<table>
<thead>
<tr>
<th>Д-р</th>
<th>25/II 23 г.</th>
<th>3 п.</th>
<th>Nephrosis. Отеки лица и ног, живота. Белок 7/100 крови выходит, в осадке эпителиальные и гиалиновые цилиндры.</th>
<th>Через 15 м.</th>
<th>20</th>
<th>30</th>
<th>30</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 м.</td>
<td>36</td>
<td>47</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>44</td>
<td>60</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>44</td>
<td>52</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>169</td>
<td>94</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>10/II 23 г.</td>
<td>3 п.</td>
<td>Состояние улучшается, незначительная отечность лица и ног.</td>
<td>Через 15 м.</td>
<td>29</td>
<td>41</td>
<td>45</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 м.</td>
<td>41</td>
<td>52</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>43</td>
<td>57</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>46</td>
<td>59</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>159</td>
<td>209</td>
<td>156</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>5/III 23 г.</td>
<td>3 п.</td>
<td>Больная в хорошем состоянии, белок в моче совершенно не обнаружен.</td>
<td>Через 15 м.</td>
<td>20</td>
<td>31</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 м.</td>
<td>37</td>
<td>47</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>45</td>
<td>59</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>40</td>
<td>51</td>
<td>50</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142</td>
<td>188</td>
<td>163</td>
<td>197</td>
</tr>
</tbody>
</table>

У больных с тяжелой формой уремии мы видим, что клетка под влиянием раздражителя медленно выходит из своего спокойного состояния, отмечается медленное нарастание функции рабочей клетки, но, раз начавшись, работа клетки происходит с усиленной энергией (инертное состояние клетки).

Пример:

<table>
<thead>
<tr>
<th>К-р</th>
<th>1/III 23 г.</th>
<th>3 п.</th>
<th>Уремия. Больная доставлена в тяжелом состоянии, рвота, понос, полубомбическое состояние, Моча: уд. в. 1009, белок 0,8%, эритроциты. Кровное давление 190 мм. ртутн., диаст. 160 мм. по Riva-Rocci-Korotkovу.</th>
<th>Через 15 м.</th>
<th>0</th>
<th>18</th>
<th>45</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 м.</td>
<td>40</td>
<td>61</td>
<td>43</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>50</td>
<td>70</td>
<td>59</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>60</td>
<td>73</td>
<td>57</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>222</td>
<td>204</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>10/III 23 г.</td>
<td></td>
<td>Состояние хорошее.</td>
<td>Через 15 м.</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 м.</td>
<td>15</td>
<td>23</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 м.</td>
<td>22</td>
<td>32</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 м.</td>
<td>23</td>
<td>30</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>89</td>
<td>78</td>
<td>114</td>
</tr>
</tbody>
</table>
В 1900—1901 гг. Завриев и Казанский, в лаборатории проф. И. П. Павлова, производили опыты на слизистой оболочке изолированного желудка, причем применяли следующие раздражители: ледяную воду, горячую воду 50°—60°, сулему (1:500), 10°/о раствор Ag N0₃, эфир, алкоголь, горчичное масло и, наконец, травматические повреждения. При одном раздражителях (раствор липса, горячая вода) они наблюдали астеническое состояние желудочных клеток: железы отвечали усиленной работой на поступление тех или иных веществ в большой желудок, но только в самом начале отделительного периода, в последующие часы они производили меньшую работу, чем в норме, и общее количество сока являлось уменьшенным. При других раздражителях (холод) нарушение деятельности желез выражалось, наоборот, носостью их работы в самом начале отделятельного периода и ее нарастающей энергией в более поздние часы пищеварения. Проф. С. С. Зимницкий, в 1901 г., произвел наблюдения над работой желудочных желез у собак, с перевязанным желчным протоком, обнаружил, что работа этих клеток у них носяла астенический характер, что сказывалось резким превалированием первого часа отделятельного периода над остальными. Кетчер на здоровых собаках показал, что при повторном кормлении с каждым возобновлением кормления кислотность сока несколько повышается, с прекращением же кормления, а, следовательно, и ослаблением отделения, она падает. Таким образом на основании экспериментальных исследований в лаборатории проф. И. П. Павлова были установлены три состояния желудочной клетки: нормальное, лабильное или астеническое и инертное или кисее. Исследования П. С. Печиновой и Кутмана из клиники проф. С. С. Зимницкого, перенесшего исследования из лаборатории в клинику (см. "Труды I Поволжского Съезда врачей") показывают, что и в клинике имеются и другие три основные формы желудочной клетки: кроме того желудочные клетки могут быть в состоянии функционального или органического поражения.

В чем же заключается сущность полученных нами данных? Где ключ к их пониманию? Если механизм работы желудочных желез в первую фазу пищеварения (психическую) более или менее понятен, то вопрос о способе возбуждения железистого аппарата желудка во вторую фазу (химическую) недостаточно ясен. Edk u n проводит гуморальную теорию, считая, что химические возбудители, всасываясь в привратнике, захватывают находящиеся в его слизистой оболочке особое вещество,—"прекрати"—соединяются с ним и образуют "секретин" (желудочный секретин). Зеленый и Сабиняр отрицают гуморальный характер желудочной секреции во II фазу и отводят большое место нервному фактору. H е c k e л полагает, что желудочные железы возбуждаются двояким образом: через экстрактагастрыльные нервы (N. vagus и N. Sympathicus) и через кровь (цит. по Бабкину, стр. 233). Химическая секреция подчинена нервным здравляющим влияниям, называемым экстрактагастрыльной нервной системой. Сама по себе эта секреция непрерывна, так как кровь всегда содержит в себе химических возбудителей. Если ввести под кожу, или, тем более, в вену какое-либо вещество, например, оливиновокислый натр, то он резко нарушает химическое равновесие организма. Ответом на это может явиться секреция многих желез пищеварительного канала с целью освобождения организма от чуждого ему вещества. У наших
больных накапливавшиеся в организме яды томом крови приносились к желудочным железам и вызывали в них патологическое состояние, в одних случаях обусловливая сильную раздражимость желудочных клеток и быструю их утомляемость, в других—полное или частичное угнетение этих клеток вследствие асфиксии. Если вспомнить теорию отеков, проведенную Н.STATICs, Widalем и Явейном, видящих в них результат накопления NaCl в крови и тканях, а также взгляд Клeменсиеи Рихтера на значение асфиксии в деятельности ядов на клетку и учение Сейде и Меншеха, что в деле возникновения и развития отека принимают участие пять факторов: кровь, ткани, протоплазма клеток, стенки капилляров и мембрана клеток, то губительная теория Эккина окажется вполне приемлемо для объяснения патологического состояния желудочных клеток у сердечных и почечных больных в состоянии декомпенсации.

В заключение, на основании полученных нами данных мы позволим себе сделать следующие выводы:
1. При сердечных и почечных заболеваниях в состоянии компенса
cион функции желудочной клетки является не нарушенной.
2. При сердечных болезнях, сопровождающихся расстройством компенса
cион, желудочная клетка находится в состоянии полного или части
cочного термопа, из которого она не может быть выведена под влиянием сильных раздражителей, богатых экстрактивным веществом, причем кис
lотность равняется 0 или стоит на низких цифрах.
3. При почечных заболеваниях, сопровождающихся отеками, работа желудочной клетки имеет астенический характер, при ураним—инертный.

Der Autor studierte die Funktion der Magenmelle bei 39 Herz—und Nierenkrankten mit Hilfe folgender von Prof. S. S. Simnitzky vorge
schlagener Methode: bei dem Prüfungsgekranken wurde aus nüchternen Ma
gen mittels der in den Magen eingeführten weichen, dünnen Sonde von Biondi-Einhorn der Mageninhalt ausgepumpt, dann wurde dem Kran
ten 200 ccm. warme Fleischbouillon gegeben und jede 15 Min. mit der Recordspritzte der Magensaft ausgezogen (3 ccm.), in welchem die Menge der freien Salzsäure und die allgemeine Säure bestimmt wurde; dann wurde nach 60 Min. der ganze Mageninhalt rein ausgepumpt und ein zweites Nachfülltern—200 ccm. derselben Fleischbouillon gegeben nachdem wurde die Untersuchung wieder im Laufe einer Stunde jede 15 Min. ge