STEARIN AS A STARTING MATERIAL FOR THE SYNTHESIS OF BIOLOGICALLY ACTIVE IONIC LIQUIDS
- Autores: Seitkalieva M.M.1, Vavina A.V.1, Strukova E.N.2
 - 
							Afiliações: 
							
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
 - Gause Institute of New Antibiotics, Russian Academy of Sciences
 
 - Edição: Volume 513, Nº 1 (2023)
 - Páginas: 67-76
 - Seção: CHEMISTRY
 - URL: https://kazanmedjournal.ru/2686-9535/article/view/651933
 - DOI: https://doi.org/10.31857/S2686953523600113
 - EDN: https://elibrary.ru/BJLCVA
 - ID: 651933
 
Citar
Texto integral
Resumo
For the first time, the possibility of using widely available stearin for the production of fatty acid-derived ionic liquids (ILs) has been shown. New amphiphilic ILs based on imidazolium, pyridinium, and quaternary ammonium cations containing long-chain alkyl substituents were obtained. The synthesized compounds are shown to have biological activity comparable to known antimicrobial compounds. ILs with one alkyl substituent have higher cytotoxicity and antimicrobial activity compared to disubstituted derivatives.
Palavras-chave
Sobre autores
M. Seitkalieva
N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: s_marina@ioc.ac.ru
				                					                																			                												                								Russian Federation, 119991, Moscow						
A. Vavina
N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
														Email: s_marina@ioc.ac.ru
				                					                																			                												                								Russian Federation, 119991, Moscow						
E. Strukova
Gause Institute of New Antibiotics, Russian Academy of Sciences
														Email: s_marina@ioc.ac.ru
				                					                																			                												                								Russian Federation, 119021, Moscow						
Bibliografia
- Welton T. // Biophys. Rev. 2018. V. 10. № 3. P. 691–706. https://doi.org/10.1007/s12551-018-0419-2
 - Koroleva M.Yu., Yurtov E.V. // Russ. Chem. Rev. 2022. V. 91. № 5. P. RCR5024. https://doi.org/10.1070/rcr5024
 - Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaganov G.V., Vasilevskaya V.V., Vdovichenko A.Yu., Gallyamov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kurochkin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molcha-nov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokh-lov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yarosla-vov A.A. // Russ. Chem. Rev. 2022. V. 91. № 12. RCR5062. https://doi.org/10.57634/RCR5062
 - Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Ya.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Yu.G., Gromov S.P., Dudkin S.V., Zaitsev S.Yu., Zakharova L.Ya., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksi-mov A.L., Mamardashvili N.Zh., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selek-tor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Yu.V., Chvalun S.N., Tsivadze A.Yu., Shtykov S.N., Shurpik D.N., Shcherbi-na M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895–1107. https://doi.org/10.1070/RCR5011
 - Azov V.A., Egorova K.S., Seitkalieva M.M., Kashin A.S., Ananikov V.P. // Chem. Soc. Rev. 2018. V. 47. № 4. P. 1250–1284. https://doi.org/10.1039/c7cs00547d
 - Ohno H., Yoshizawa-Fujita M., Kohno Y. // Bull. Chem. Soc. Jpn. 2019. V. 92. № 4. P. 852–868. https://doi.org/10.1246/bcsj.20180401
 - Wang H., Gurau G., Rogers R.D. // Chem. Soc. Rev. 2012. V. 41. № 4. P. 1519–1537. https://doi.org/10.1039/c2cs15311d
 - Welton T. // Coord. Chem. Rev. 2004. V. 248. № 21–24. P. 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015
 - MacFarlane D.R., Tachikawa N., Forsyth M., Pringle J.M., Howlett P.C., Elliott G.D., Davis J.H., Watanabe M., Simon P., Angell C.A. // Energy Environ. Sci. 2014. V. 7. № 1. P. 232–250. https://doi.org/10.1039/c3ee42099j
 - Antuganov D.O., Nadporojskii M.A., Kondratenko Yu.A. // Mendeleev Commun. 2022. V. 32. № 3. P. 408–410. https://doi.org/10.1016/j.mencom.2022.05.040
 - Krasovskiy V.G., Gorbatsevich O.B., Talalaeva E.V., Glukhov L.M., Chernikova E.A., Kustov L.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 551–553. https://doi.org/10.1016/j.mencom.2022.07.039
 - Marrucho I.M., Branco L.C., Rebelo L.P.N. // Annu. Rev. Chem. Biomol. Eng. 2014. V. 5. № 1. P. 527–546. https://doi.org/10.1146/annurev-chembioeng-060713-040024
 - Egorova K.S., Gordeev E.G., Ananikov V.P. // Chem. Rev. 2017. V. 117. № 10. P. 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562
 - Simoes M., Pereira A.R., Simoes L.C., Cagide F., Bor-ges F. // Drug Discov. Today. 2021. V. 26. № 6. P. 1340–1346. https://doi.org/10.1016/j.drudis.2021.01.031
 - Vereshchagin A.N., Frolov N.A., Egorova K.S., Seitkalieva M.M., Ananikov V.P. // Int. J. Mol. Sci. 2021. V. 22. № 13. P. 6793. https://doi.org/10.3390/ijms22136793
 - Ali M.K., Moshikur R.M., Wakabayashi R., Tahara Y., Moniruzzaman M., Kamiya N., Goto M. // J. Colloid. Interface Sci. 2019. V. 551. P. 72–80. https://doi.org/10.1016/j.jcis.2019.04.095
 - Raj T., Chandrasekhar K., Park J., Varjani S., Sharma P., Kumar D., Yoon J.J., Pandey A., Kim S.H. // Chemosphere. 2022. V. 307. Part 2. P. 135787. https://doi.org/10.1016/j.chemosphere.2022.135787
 - Gusain R., Khatri O.P. // RSC Adv. 2016. V. 6. № 5. P. 3462–3469. https://doi.org/10.1039/c5ra25001c
 - Oulego P., Faes J., González R., Viesca J.L., Blanco D., Battez A.H. // J. Mol. Liq. 2019. V. 292. P. 111451. https://doi.org/10.1016/j.molliq.2019.111451
 - Gundolf T., Weyhing-Zerrer N., Sommer J., Kalb R., Schoder D., Rossmanith P., Mester P. // ACS Sustainable Chem. Eng. 2019. V. 7. № 19. P. 15865–15873. https://doi.org/10.1021/acssuschemeng.8b06201
 - Dzhemileva L.U., D’yakonov V.A., Seitkalieva M.M., Kulikovskaya N.S., Egorova K.S., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6414–6430. https://doi.org/10.1039/d1gc01520f
 - Gal N., Malferrari D., Kolusheva S., Galletti P., Tagliavini E., Jelinek R. // Biochim. Biophys. Acta 2012. V. 1818. № 12. P. 2967–2974. https://doi.org/10.1016/j.bbamem.2012.07.025
 - Wu S., Zeng L., Wang C., Yang Y., Zhou W., Li F., Tan Z. // J. Hazard. Mater. 2018. V. 348. P. 1–9. https://doi.org/10.1016/j.jhazmat.2018.01.028
 - Egorova K.S., Seitkalieva M.M., Kashin A.S., Gordeev E.G., Vavina A.V., Posvyatenko A.V., Ananikov V.P. // J. Mol. Liq. 2022. V. 367. Part A. P. 120450. https://doi.org/10.1016/j.molliq.2022.120450
 - Soller F., Roy L.A., Davis D.A. // J. World Aquac. Soc. 2019. V. 50. № 1. P. 186–203. https://doi.org/10.1111/jwas.12571
 - Gunstone F.D., Herslöf B.G. Lipid glossary 2. Bridgwater, Oily press, 2000. 262 p.
 - Wanasundara U.N., Wanasundara P.K. J.P.D., Shahidi F., Novel Separation Techniques for Isolation and Purification of Fatty Acids and Oil By-Products. In: Bailey’s Industrial Oil and Fat Products. Shahidi F. (Ed.). 7th Edn. John Wiley & Sons, Ltd., 2020. https://doi.org/10.1002/047167849x.bio065.pub2
 - Brown J.B., Kolb D.K. // Prog. Chem. Fats Other Lipds. 1955. V. 3. P. 57–94. https://doi.org/10.1016/0079-6832(55)90004-5
 - Maddikeri G.L., Pandit A.B., Gogate P.R. // Ind. Eng. Chem. Res. 2012. V. 51. № 19 P. 6869–6876. https://doi.org/10.1021/ie3000562
 - Martins P.F., Ito V.M., Batistella C.B., Maciel M.R.W. // Sep. Purif. Technol. 2006. V. 48. № 1. P. 78–84. https://doi.org/10.1016/j.seppur.2005.07.028
 - Steinigeweg S., Gmehling J. // Ind. Eng. Chem. Res. 2003. V. 42. № 15. P. 3612–3619. https://doi.org/10.1021/ie020925i
 - Ni J., Meunier F.C. // Appl. Catal. A: Gen. 2007. V. 333. № 1. P. 122–130. https://doi.org/10.1016/j.apcata.2007.09.019
 - Nakai Y., Moriyama K., Togo H. // Eur. J. Org. Chem. 2016. V. 2016. № 4. P. 768–772. https://doi.org/10.1002/ejoc.201501315
 - Frolov N.A., Fedoseeva K.A., Hansford K.A., Vereshchagin A.N. // ChemMedChem. 2021. V. 16. № 19. P. 2954–2959. https://doi.org/10.1002/cmdc.202100284
 - Xia X., Wan R., Wang P., Huo W., Dong H., Du Q. // Ecotoxicol. Environ. Saf. 2018. V. 162. P. 408–414. https://doi.org/10.1016/j.ecoenv.2018.07.022
 - Arcau J., Andermark V., Rodrigues M., Giannicchi I., Pérez-Garcia L., Ott I., Rodríguez L. // Eur. J. Inorg. Chem. 2014. V. 2014. № 35. P. 6117–6125. https://doi.org/10.1002/ejic.201402819
 - Carson L., Chau P.K W., Earle M.J., Gilea M.A., Gil-more B.F., Gorman S.P., McCann M.T., Seddon K.R. // Green Chem. 2009. V. 11. № 4. P. 492–497. https://doi.org/10.1039/b821842k
 - Demberelnyamba D., Kim K.S., Choi S., Park S.Y., Lee H., Kim C.J., Yoo I.D. // Bioorg. Med. Chem. 2004. V. 12. № 5. P. 853–857. https://doi.org/10.1016/j.bmc.2004.01.003
 - Thorsteinsson T., Masson M., Kristinsson K.G., Hjalmarsdottir M.A., Hilmarsson H., Loftsson T. // J. Med. Chem. 2003. V. 46. № 19. P. 4173–4181. https://doi.org/10.1021/jm030829z
 - Cole M.R., Li M., El-Zahab B., Janes M.E., Hayes D., Warner I.M. // Chem. Biol. Drug Des. 2011. V. 78. № 1. P. 33–41. https://doi.org/10.1111/j.1747-0285.2011.01114.x
 - Siopa F., Figueiredo T., Frade R.F.M., Neto I., Meirinhos A., Reis C.P., Sobral R.G., Afonso C.A.M., Rijo P. // ChemistrySelect. 2016. V. 1. № 18. P. 5909–5916. https://doi.org/10.1002/slct.201600864
 - Łuczak J., Jungnickel C., Łącka I., Stolte S., Hupka J. // Green Chem. 2010. V. 12. № 4 P. 593–601. https://doi.org/10.1039/b921805j
 - Vavina A.V., Seitkalieva M.M., Posvyatenko A.V., Gordeev E.G., Strukova E.N., Egorova K.S., Anani-kov V.P. // J. Mol. Liq. 2022. V. 352. P. 118673. https://doi.org/10.1016/j.molliq.2022.118673
 - Seitkalieva M.M., Vavina A.V., Posvyatenko A.V., Egorova K.S., Kashin A.S., Gordeev E.G., Strukova E.N., Romashov L.V., Ananikov V.P. // ACS Sustain. Chem. Eng. 2021. V. 9. № 9. P. 3552–3570. https://doi.org/10.1021/acssuschemeng.0c08790
 
				
			
						
						
					
						
						
									



