Fractal analysis and problem-solving to identify the characteristics of time series in system diagnosis

Abstract


Fractal analysis is required when solving the problems of system diagnostics associated with time-series parameter changes. There is no economy sector that does not use algorithms based on the fractal analysis theory. However, this theory has long been given little attention and value. The conflict between the symmetry of Euclidean geometry and asymmetry of the real world can be further extended to our modern concept of time. Traditionally, all the events are treated as either random or deterministic. In fractal time, randomness and determinism, chaos and order are coexistent. This is also true for natural systems characterized by local randomness and global determinism. We have studied both linear and nonlinear fractals and analyzed the use of fractal analysis in such tasks as market assessment, assessment of oil companies, and complex system assessment tasks. Our program of Fractal Sets demonstrates the beauty of fractal patterns and the fractals’ property of self-similarity and enables obtaining Julia and Mandelbrot sets of different degrees. The program also allows us to study the behavior of fractal patterns in case of complex C constant changes and obtain complex point data of these sets. It is worth noting that the application of fractal analysis is more interesting and practical when using MatLab and SkiLab(Silab) packages with appropriate fractal analysis modules. We have developed software fractal analysis modules using character-coded mathematic packages indicated above. Moreover, we have developed software modules for building various types of fractals and fractal diagrams. Such solutions are topical in almost all relevant bachelor and master programs. The program of Fractal Sets used C++ programming language and received a Software Application State Registration Certificate.

Full Text

Введение во фрактальные временные ряды Математическая культура долгое время была одержима гладким и симметричным. Фрактальная геометрия в отличие от евклидовой основывается на грубости и асимметрии. «Самоподобие» является определяющим свойством фракталов. Большинство естественных структур, особенно живые существа, обладают этим свойством. Вторая проблема, возникающая при применении евклидовой геометрии к нашему миру, - это проблема размерности. Восприятие размерности может изменяться в зависимости от нашего расстояния от объекта. Мы увидим разницу между гладкостью евклидового мира и грубостью нашего мира, что ограничивает пригодность евклидовой геометрии как метода описания [2]. Противоречия между симметрией евклидовой геометрии и асимметрией реального мира могут быть далее продлены до нашего понятия времени. Так в науке сложилось, что события рассматриваются либо как случайные, либо как детерминированные. Во фрактальном времени случайность и детерминизм, хаос и порядок сосуществуют. Время не имело значения в механике Ньютона. Теоретически время могло быть повернуто в обратную сторону, потому что уравнения Ньютона работали одинаково хорошо независимо от того, шло ли время вперед или назад. В то же время такой процесс, как смешение жидкостей зависит от времени и необратим. В термодинамике стрелка времени указывает только в будущее. Появление квантовой механики подорвало детерминистическое представление о вселенной. Но все еще оставалось сомнение: вселенная детерминирована или случайна? Постепенно стало очевидным, что самые естественные системы характеризуются локальной случайностью и глобальным детерминизмом. Эти противоположные состояния должны сосуществовать. Детерминизм даст нам закон природы, в котором случайность привносит новшество и разнообразие. Здоровая, развивающаяся система - это та, которая не только может пережить случайные удары, но также может поглотить такие удары, чтобы улучшить всю систему, когда это станет целесообразным. В науке хаоса и фракталов случайность и необходимость сосуществуют. В этих системах энтропия высока, но никогда не достигает максимального состояния беспорядка из-за глобального детерминизма. Хаотические системы экспортируют свою энтропию или «рассеивают» ее, аналогично тому, как механические устройства рассеивают часть своей энергии как трение. Игра хаоса показывает, что локальная случайность и глобальный детерминизм могут сосуществовать, чтобы создать стабильную, самоподобную структуру, которую и называют фракталом. Бенуа Мандельброт, отец фрактальной геометрии, не сформулировал точного определения фрактала. Приведем фрактальные множества Б. Мандельброта и Г. Жюлиа, полученные из разработанной нами программы. Рис. 1. Фракталы Фракталы имеют определенные особенности, которые измеримы, и свойства, которые являются желательными для целей моделирования. Первое свойство - самоподобие. Оно означает, что части в некотором роде связаны с целым. Это свойство самоподобия делает фрактал масштабно-инвариантным. Фрактальные зависимости имеют вид прямой на графиках, где обе оси имеют логарифмический масштаб. Модели, описываемые таким образом, должны использовать степенную зависимость (вещественное число, возведенное в степень). Эта особенность масштабирования по степенному закону является вторым свойством фракталов, фрактальной размерностью, которая может описывать либо физическую структуру, либо временной ряд. (1) Фрактальная размерность D характеризует то, как предмет заполняет пространство. Фрактальная размерность временного ряда измеряет, насколько изрезанным является временной ряд. Фрактальная размерность временного ряда важна, потому что она признает, что процесс может быть где-то между детерминистическим (линия с фрактальной размерностью 1) и случайным (фрактальная размерность 1,5). Фактически, фрактальная размерность линии может находиться в пределах от 1 до 2. При значениях 1,5 < ш < 2 временной ряд более зазубрен, чем случайная последовательность, или имеет больше инверсий. Само собой разумеется, статистика временного ряда с фрактальными размерностями, отличными от 1,5, сильно отличалась бы от гауссовой статистики и не обязательно находилась бы в пределах нормального распределения. Существуют несколько подходов к определению фрактальной размерности: 1) клеточная размерность; 2) поточечная размерность; 3) корреляционная размерность; 4) информационная размерность. Клеточная размерность. Используется при исследовании размерности линий и площадей с фрактальной природой. Ее суть заключается в том, что линия или площадь накрывается сеткой с размером ячейки δ. Затем подсчитывается количество клеток N(δ), накрывающих исследуемую линию (или площадь). Далее величина δ несколько раз уменьшается, и для каждого нового значения δ определяется соответствующее количество клеток N(δ). На рисунке 2 приведена иллюстрация этого процесса. δ1 δ2 δ3 Рис. 2. Покрытие кривой линии клетками с различными размерами δ В результате этого получаем несколько пар значений (N(δ), δ), для которых вычисляем логарифмы. Теперь построим систему координат в двойном логарифмическом масштабе lg N(δ) lg δ и нанесем точки с координатами [lg N(δ), lg δ] на плоскости. Проведем прямую линию через эти точки, как показано на рисунке 3. Подпись: Log(N(δ)) Log(δ) δi δi δi N(δi)=10 N(δi)=30 N(δi)=99 Рис. 3. Построение системы координат с двойным логарифмитеским масштабом Далее определим угол наклона этой линии α, как показано на рисунке 4. Клеточная фрактальная размерность D представляется выражением: D = tg α. Рис. 4. Определение клеточной фрактальной размерности по наклону прямой линии Поточечная (фрактальная) размерность. Рассмотрим какую-нибудь траекторию в фазовом пространстве на протяжении длительного времени (рис. 5). Проведем выборку точек на траектории (достаточно большое число No) произвольным образом. Опишем вокруг какой-нибудь точки х0 на траектории сферу диаметра δ (или куб с ребром δ) и подсчитаем число выборочных точек, попавших внутрь сферы. Вероятность того, что выборочная точка окажется внутри сферы, определяется выражением: (2) где No - общее число точек на траектории. Выборочные точки Траектория в фазовом пространстве δ L x0 x3 x2 x1 Рис. 5. Геометрические построения для нахождения поточчной (фрактальной) размерности Размерность траектории для некоторой области точек X(i) фазового пространства имеет вид: (3) После небольших преобразований формулу (3) можно привести к формуле (1). Корреляционная (фрактальная) размерность широко используется для определения меры упорядоченности движений и является нижней оценкой хаусдорфовой размерности странного аттрактора. Фрактальный анализ способствовал появлению новых научных дисциплин и подходов оценки функционирования различных систем. Теория хаоса и фрактальная статистика предлагают нам новый способ понимания того, как функционируют рынки и экономики. Нет гарантий того, что нам будет легче зарабатывать деньги, но, тем не менее, мы будем более приспособлены к разработке стратегий и оценке рисков. Нестационарные временные ряды можно разделить по типу нестационарности на три достаточно общих класса[1; 3; 4]: · ряды, нестационарные в малом, когда сохраняется закон распределения или его основные параметры, а меняется математическое ожидание или дисперсия; · ряды, нестационарные в большом, когда меняется, например, закон распределения; · существенно нестационарные ряды, когда не только меняется закон распределения случайной величины, но и не существует аналитического представления тренда временного ряда, т.е. его невозможно выделить в виде функциональной зависимости. К этому классу временных рядов относятся многие экономические временные ряды, для которых характерна схема частичного управления и частая смена определяющего случайный процесс комплекса условий.

About the authors

T. B Kaziakhmedov

Nizhnevartovsk State University

Email: ktofik@yandex.ru

Associate Professor at the Department of Computer Science and Methods of Teaching Computer Science

References

  1. Ахметханов Р.С. Применение теории фракталов в исследовании динамических свойств механических систем // Проблемы машиностроения и автоматизация. - 2003. - № 3. - С. 47-53.
  2. Кроновер Р.М. Фракталы и хаос в динамических системах. - М., 2000.
  3. Полякова М.В., Любченко В.В. Структурный анализ временных рядов со скачками среднего значения // Оптимизация управления, информационные системы и компьютерные технологии: Труды Украинской академии экономической кибернетики (Южный научный центр). Киев; Одесса, 1999. - Вып. 1. -Ч. 1. -С. 174-179.
  4. Потапов А.А. Фракталы в радиофизике и радиолокации: Топология выборки. - М., 2005.

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies