A new method for determining the buckling resistance in the nonlinear range of strains for a column supported by rotational stiffeners

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An innovational method for solving the Euler–Bernoulli problem of an overall buckling of the uniform column supported by rotational springs of stiffnesses γ1, γ2, N ∙ m free from traditional simplifications (invariable flexural stiffness and length) is given. It is based on a natural and comprehensive constraint on the restored axis length. A system of algebraic equations relating the critical stress σcr to the nonlinear compression diagram ε(σ) of the material, the slenderness of the column λ and the values γ1, γ2 has been obtained, solved and verified in important special cases. It is shown that columns of the same material with the same so-called the reduced spring stiffnesses have identical dependencies σcr(λ). It is shown that columns with λ ≤ λmin12) cannot be buckled by any axial load F for various types of ε(σ) (Ramberg–Osgood, rational fraction, polynomial, etc.).

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Chistyakov

Physical and Technical Institute of RAS named after A.F.Ioffe

Хат алмасуға жауапты Автор.
Email: v.chistyakov@mail.ioffe.ru
Ресей, Saint-Peterbourg

S. Soloviev

Physical and Technical Institute of RAS named after A.F.Ioffe

Email: serge.soloviev@mail.ioffe.ru
Ресей, Saint-Peterbourg

Әдебиет тізімі

  1. Hu Ku., David C. Lai. Effective length factor for restrained beam-column // J. Struct. Eng. 1986. V. 112. № 2. P. 241–256. https://doi.org/10.1061/%28ASCE%290733-9445%281986%29112%3A2%28241%29
  2. Huang Z.-F., Tan K.-H. Rankine approach for fire resistance of axially-and-flexurally restrained steel columns // J. Constr. Steel Res. 2003. V. 59. № 12. P. 1553–1571. https://doi.org/10.1016/s0143-974x(03)00103-2
  3. Cai Jian Guo, Xu Yi Xiang, Feng Jian, Zhang Jin. Buckling and post-buckling of rotationally restrained columns with imperfections // Scie. China. Phys., Mech. & Astron. 2012. V. 55. P. 1519–1522. https://doi.org/10.1007/s11433-012-4811-9
  4. Yaylı M. Ö., Yerel Kandemir S. Buckling analysis of a column with rotational springs at both ends in aircraft column // Sustainable Aviation, Springer International Publishing, Switzerland. 2016. P. 159–165. https://doi.org/10.1007/978-3-319-34181-1_14
  5. Cao K., Guo Y.-J., Xu J. Buckling analysis of columns ended by rotation-stiffness spring hinges // Int. J. of Steel Struct. 2016. V. 16. P. 1–9. https://doi.org/10.1007/s13296-016-3001-4
  6. Chistyakov V. V., Soloviev S. M. Buckling in inelastic regime of a uniform console with symmetrical cross section: computer modeling using Maple 18 // Discr. & Contin. Mod. & Appl. Comp. Sci. 2023. V. 31. № 2. P. 174–188. https://doi.org/10.22363/2658-4670-2023-31-2-174-188
  7. Chistyakov V. V. Analytical and numerical modelling of a buckling in a plastic regime of a homogeneous console with symmetrical cross section/ Technical Physics ” 2023, iss. 12, p. 1588–1591, https://doi.org/10.61011/TP.2023.12.57715.f207-23
  8. Ramberg, W., Osgood, W. R. Description of stress–strain curves by three parameters // Technical Note. 1943. № 902.
  9. Anakhaev K.N. On the Calculation of Nonlinear Buckling of a Bar / Mechanics of Solids, 2021. v. 56, № 5. p. 684–689. https://doi.org/10.3103/S002565442105006X
  10. Wang Y.Q., Yuan H.X., Chang T, Du X.X., Yu M. Compressive buckling strength of extruded aluminum alloy I-section columns with fixed-pinned end conditions // Thin-Walled Struct. 2017. V. 119. P. 396–403. https://doi.org/10.1016/j.tws.2017.06.034
  11. Zhou Sh.R., Shi L.L., Xiong G., Kang Sh.B., Qin Y.L., Yan H.Q. Global buckling behavior of bamboo scrimber box columns under axial compression: Experimental tests and numerical modelling // J. Build. Eng. Part A. 2023. P. 10543. https://doi.org/10.1016/j.jobe.2022.105435
  12. Chen Jiao, Zhipeng Chen, Qiuwei Zhang et al. Compressive strength and impact resistance of Al2O3/Al composite structures fabricated by digital light processing // Ceram. Int. 2022. V. 48. № 24. P. 36091–36100. https://doi.org/10.1016/j.ceramint.2022.08.150

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. a) Loading diagram of a curved column; b) bending profile in the ratio scale: vertical black dash-dotted line – boundaries of convexity regions I, II and III y(z), red dots – slope of pf 1 axis at point A, red dotted line – slope q1 at inflection point (IP) 1, blue dots – slope of pf 2 axis at point B, blue dotted line – slope q2 at IP 2, green long dotted line – line of inflection points, horizontal black dotted line – tangent at the point of maximum deviation y.

Жүктеу (140KB)
3. Fig. 2. a) Dependence σcr(λ), Pa (6.1) for an I-beam S = 51.3 cm2, ix = 3.6 cm, Al 6061 T6 alloy [10] for the same spring stiffnesses in the range γ = 0–50 MN m; b) 3D graph σcr(λ,γ) for bamboo columns 100×100×20 [11], green – physical sheet, red – non-physical.

Жүктеу (347KB)
4. Fig. 3. a) Compression diagram of the Al + 15% Al2O3 composite: circles are experimental points [12], black dotted line is σ(ε), Pa, fourth-order polynomial, gray solid line is Hooke's law, red is the ε(σ) dependence of the fifth-order polynomial, green (right) is the tangent modulus of elasticity Et, Pa; b) minimum flexibility as a function of the stiffness of identical springs γ, N ∙ m for a 20K1 I-beam made of the composite.

Жүктеу (256KB)
5. Fig. 4. a) Dependences σ(λ), Pa (7.4) for column support on an ideal hinge and rigid fixing for linear (gray) and polynomial n = 5 (black) compression diagrams, I-beam 20K1, Al + 15% Al2O3; b) dependence of σ, Pa, on λ, γ1, N ∙ m (8.3) for the same profile.

Жүктеу (270KB)
6. Fig. 5. a) Curves σ(γ1 = γ2, N ∙ m), Pa and σ(γ1,γ2 = 0), Pa for I-beam 20K1 made of composite Al + 15 wt.% Al2O3 at λ = 50 (~2.5 m); b) projection of surface “ridge” σ, Pa, from γ1,γ2, N ∙ m with values ​​χ i according to (9.1) onto coordinate plane (Oσγ1) (border of blue with upper blue-gray) and line of its intersection with (Oσγ1) (border of blue with lower gray).

Жүктеу (208KB)

© Russian Academy of Sciences, 2025