Habitat suitability and areal dynamics of rare desert species of myxomycetes of the genus Didymium under global climate change in Asia

Capa

Citar

Texto integral

Resumo

The ability to determine the spatial distribution of rare species is critical to understanding the environmental factors that influence them. Maximum entropy (MaxEnt) modeling of spatial distributions addresses this problem by allowing inferences about species distributions under environmental change from occurrence data. Using this method, we mapped the current and potential geographic distribution of two rare species of desert myxomycetes, Didymium mexicanum and Didymium nullifilum. Models of potential global species distributions were created using bioclimatic data and MaxEnt software to model species habitat suitability under current conditions (~1950–2000) and under projected changes in future climate (2100 AD) based on 18 spatial distribution points for D. mexicanum and 4 points for D. nullifilum. A detailed morphological description is given for the species. We identified the species D. mexicanum for the first time in Asia.

Texto integral

Acesso é fechado

Sobre autores

A. Vlasenko

Central Siberian Botanical Garden SB RAS, st. Zolotodolinskaya

Autor responsável pela correspondência
Email: vlasenkomyces@mail.ru
Rússia, 101, Novosibirsk, 630090

V. Vlasenko

Central Siberian Botanical Garden SB RAS, st. Zolotodolinskaya

Email: anastasiamix81@mail.ru
Rússia, 101, Novosibirsk, 630090

Bibliografia

  1. Aguilar M., Lado C. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae // The ISME Journal. 2012. V. 6. P. 1506–1514. https://doi.org/10.1038/ismej.2012.12
  2. Almadrones-Reyes K.J., Dagamac N. H. Predicting local habitat suitability in changing climate scenarios: Applying species distribution modelling for Diderma hemisphaericum // Curr. Res. in Environm. and Appl. Mycol. (J. of Fung. Biol.) 2018. V. 8. № 5. P. 492–500. https://doi.org/10.5943/cream/8/5/2
  3. Chapman D. S., Purse B. V. Community versus single‐species distribution models for British plants // J. Biogeogr. 2011. V. 38. № 8. P. 1524–1535. https://doi.org/10.1111/j.1365-2699.2011.02517.x
  4. Czernyadjeva I. V., Afonina O. M., Ageev D. V., Baisheva E. Z., Bulyonkova T. M., Cherenkova N. N., Doroshina G.Ya., Drovnina S. I., Dugarova O. D., Dulepova N. A., Dyachenko A. P., Filippova N. V., Ginzburg E. G., Gogorev R. M., Himelbrant D. E., Ignatov M. S., Kataeva O. A., Kotkova V. M., Kuragina N. S., Kurbatova L. E., Kushnevskaya E. V., Kuzmina E.Yu., Melekhin A. V., Notov A. A., Novozhilov Yu.K., Popov S.Yu., Popova N. N., Potemkin A. D., Stepanchikova I. S., Stepanova V. A., Tubanova D.Ya., Vlasenko A. V., Vlasenko V. A., Voronova O. G., Zhalov Kh.Kh. New cryptogamic records. 4 // Новости систематики низших растений. 2019. Т. 53. Вып. 2. C. 431–479. https://doi.org/10.31111/nsnr/2019.53.2.431
  5. Dagamac N. H.A., Bauer B., Woyzichovski J., Shchepin O. N., Novozhilov Yu.K., Schnittler M. Where do nivicolous myxomycetes occur? – Modeling the potential worldwide distribution of Physarum albescens // Fung. Ecol. 2021. V. 53. 101079. https://doi.org/10.1016/j.funeco.2021.101079
  6. Guisan A., Thuiller W. Predicting species distribution: offering more than simple habitat models // Ecol. Lett. 2005. V. 8. № 9. P. 993–1009. https://doi.org/10.1111/j.1461-0248.2007.01044.x
  7. Guisan A., Zimmermann N. E. Predictive habitat distribution models in ecology // Ecol. Modell. 2000. V. 135. № 2–3. P. 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
  8. Guo Y., Li X., Zhao Z., Wei H., Gao B., Gu W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios // Scient. Report. 2017. V. 7. 46221. https://doi.org/10.1038/srep46221
  9. Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas // Int. J. Climatol. 2005. V. 25. P. 1965–1978. https://doi.org/10.1002/joc.1276
  10. Hijmans R. J., Guarino L., Mathur P. DIVA-GIS Version 7.5 Manual. 2012. Available from Available from: http://diva-gis.org/docs/DIVA-GIS_manual_7.pdf (accessed 15th of May 2023)
  11. Limbo-Dizon J.E., Almadrones-Reyes K.J., Macabago S. A.B., Dagamac N. H.A. Bioclimatic modeling for the prediction of the suitable regional geographical distribution of selected bright-spored myxomycetes in the Philippine archipelago // Biodiv. J. Biol. Div. 2022. V. 23. № 5. P. 2285–2294. https://doi.org/10.13057/biodiv/d230506
  12. Olson D. M., Dinerstein E., Wikramanayake E. D., Burgess N. D., Powell G. V.N., Underwood E. C., D’amico J.A., Itoua I., Strand H. E., Morrison J. C., Loucks C. J., Allnutt T. F., Ricketts T. H., Kura Y., Lamoreux J. F., Wettengel W. W., Hedao P., Kassem K. R. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity // BioScience. 2001. V. 51. № 11. P. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  13. Phillips S. J., Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation // Ecography. 2008. V. 190. P. 231–259. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  14. Phillips S. J., Anderson R. P., Schapired R. E. Maximum entropy modeling of species geographic distributions // Ecol. Modell. 2006. V. 190. P. 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  15. Pietras M., Litkowiec M., Gołębiewska J. Current and potential distribution of the ectomycorrhizal fungus Suillus lakei (Murrill) A.H. Sm. et Thiers in its invasion range // Mycorrhiza. 2018. V. 28. P. 467–475. https://doi.org/10.1007/s00572-018-0836-x
  16. Scheldeman X., Van Zonneveld M. Training manual on spatial analysis of plant diversity and distribution. Rome: Biodiversity International, 2010. P. 1–179. Available from: https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_ news/Training_manual_on_spatial_analysis_of_plant_ diversity_and_distribution_1431_07.pdf (доступ 15 мая 2023)
  17. Segurado P., Araújo M. B. An evaluation of methods for modelling species distributions // J. Biogeogr. 2004. V. 31. P. 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x
  18. Yuan H.-Sh., Wei Yu-L., Wang X.-G. MaxEnt modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China // Fung. Ecol. 2015. V. 17. P. 140–145. https://doi.org/10.1016/j.funeco.2015.06.001
  19. Vlasenko V. A., Dejidmaa T., Dondov B., Ochirbat E., Kherlenchimeg N., Javkhlan S., Burenbaatar G., Uranchimeg A., Asbaganov S. V., Vlasenko A. V. Distribution and ecological niche modeling of a rare species Poronia punctata in Asia // Curr. Res. in Environm. and Appl. Mycol. (J. of Fung. Biol.). 2021. V. 11. № 1. P. 468–484. https://doi.org/10.5943/cream/11/1/32
  20. Vlasenko A. V., Novozhilov Yu.K., Vlasenko V. A., Korolyuk A.Yu., Dulepova N. A. New data on the obligate coprophilous myxomycetes of Siberia // The Bulletin of Irkutsk State University. Series: Biology and Ecology. 2017. V. 21. P. 50–60.
  21. Zurell D., Franklin J., König C., Bouchet P. J., Dormann C. F., Elith J., Fandos G., Feng X., Guillera‐Arroita G., Guisan A., Lahoz‐Monfort J.J., Leitão P. J., Park D. S., Townsend Peterson A., Rapacciuolo G., Schmatz D. R., Schröder B., Serra‐Diaz J.M., Thuiller W., Yates K. L., Zimmermann N. E., Merow C. A standard protocol for reporting species distribution models // Ecography. A journal of space and time in ecology. 2020. V. 43. № 9. P. 1261–1277. https://doi.org/10.1111/ecog.04960

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Didymium mexicanum (NSK 1016359): a, b – spores; c, d – surface of the spores; e – ornament of the inner side of the peridium; f – lime crystals on the surface of the peridium. Scale: a, b – 2 microns, c – 1 microns, e – 4 microns.

Baixar (905KB)
3. Fig. 2. Didymium mexicanum (NSK 1016359): a – capillium filaments attached to the peridium; b – capillium filaments. Didymium nullifilum (NSK 1016358): c – sporocarp; d – spore; e – spore surface. Scale: a – 10 microns, b, c – 2 microns, d – 50 microns, d – 1 microns.

Baixar (598KB)
4. Fig. 3. Locations of Didymium mexicanum (blue dots) and Didymium nullifilum (red dots) on a global scale. The colors correspond to the height above sea level. The legend shows a scale of heights from minimum to maximum in meters above sea level. Elevation gradation: 0-200 m – lowlands, 200-500 m – uplands, 500-800 m – lowlands, 800-2000 m – midlands, more than 2000 m – highlands.

Baixar (486KB)
5. Fig. Рис. 4. Потенциальное географическое распространение Didymium mexicanum в условиях современного климата (~1950–2000 лет) в глобальном масштабе. Результаты MaxEnt представлены в логистическом формате (значения в легенде от 0 до 1). 1 – наблюдаемые точки присутствия.

Baixar (236KB)
6. Fig. 5. Potential geographical distribution of Didymium mexicanum in the conditions of the future climate (~1950-2000 years) on a global scale. The MaxEnt results are presented in a logistic format (values in the legend from 0 to 1). 1 is the observed points of presence.

Baixar (224KB)
7. Fig. 6. The potential geographical distribution of Didymium mexicanum within the boundaries of terrestrial ecoregions within the range of the species in Asia under the conditions of current and future climate: a – current climate; b – future climate. The red squares are the observed points of presence. Ecoregion designations: CLD – Caspian lowland desert; KSD – Kazakh semi–desert; CAND – northern desert of Central Asia; CASD - southern desert of Central Asia (parts of the Desert biome and xeric shrubs); EEFS – Eastern European forest steppe; CMF – mixed forests of the Caucasus; SMF – Sarmatian mixed forests; WSHF – Hemiboreal forests of Western Siberia (parts of the biome of Broadleaf and mixed forests of the temperate zone); PS – Pontic steppe; KS – Kazakh steppe; KFS – Kazakh forest-steppe; Kazakh Highlands (parts of the biome of Temperate meadows, savannas and shrubs); SRT – Scandinavian and Russian taiga; UMF – Ural mountain forests and tundra; WST – West Siberian Taiga (parts of the Boreal Forests biome/Taiga). The probability of the species' presence in the current and future climate is indicated similarly to Figures 4 and 5. The black line represents the boundaries of ecoregions. The white line is the borders of the countries.

Baixar (866KB)
8. Fig. 7. Potential geographical distribution of Didymium nullifilum in the conditions of modern climate (~1950-2000 years) on a global scale. The MaxEnt results are presented in a logistic format (values in the legend from 0 to 1). 1 is the observed points of presence.

Baixar (306KB)
9. Fig. 8. Potential geographical distribution of Didymium nullifilum in the conditions of the future climate (~1950-2000 years) on a global scale. The MaxEnt results are presented in a logistic format (values in the legend from 0 to 1). 1 is the observed points of presence.

Baixar (281KB)
10. Fig. 9. Potential geographical distribution of Didymium nullifilum within terrestrial ecoregions within the range of the species in Asia in the conditions of current and future climate: a – current climate; b – future climate. The red squares are the observed points of presence. Ecoregion designations: SOFS – Selenga-Orkhon forest-steppe; DFS – Daurian forest-steppe (parts of the biome Temperate meadows, savannas and shrubs); TBCF – Trans–Baikal coniferous forests; EST - East Siberian taiga (parts of the biome Boreal forests/Taiga); TBBMT – Trans-Baikal bald tundra (part of the Tundra biome). The probability of the species' presence in the current and future climate is indicated similarly to Figures 7 and 8. The black line represents the boundaries of ecoregions.

Baixar (843KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024