Comparative Analysis of Proteolytic Enzyme Activity in the Midgut of Galleria mellonella Larvae Selected for Antibiotic Resistance

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The accumulation of antibiotics in biocenoses carries risks of development of multidrug-resistant microorganisms through horizontal transfer of resistance genes, metabolic changes in various animals, including humans. It is hypothesized that these changes may have a significant impact on the structure of digestive enzymes in the gut. This may be achieved through the switching between different classes and isoforms of proteases, the expression of new isoforms, and the consequent effect on digestion and resistance to pathogens. The present study was completed on the larvae of the wax moth Galleria mellonella, which were cultivated on a diet that contained low doses of antibiotic for thirty generations (R-line). The R-line obtained demonstrated a considerable degree of resistance in the insects to exposure to the entomopathogenic bacterium Bacillus thuringiensis. The per os treatment of R-line larvae demonstrated a complete loss of susceptibility to the bacterium, and a decrease in total proteolytic enzyme activity from the first day after infection, primarily due to suppression of serine protease activity.

全文:

受限制的访问

作者简介

T. Klementeva

Institute of Systematics and Ecology of Animals SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk

N. Kruykova

Institute of Systematics and Ecology of Animals SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk

D. Kornienko

Institute of Systematics and Ecology of Animals SB RAS; Novosibirsk State Medical University

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

A. Esaulko

Stavropol State Agrarian University

Email: ovp0408@yandex.ru
俄罗斯联邦, Stavropol

V. Glupov

Institute of Systematics and Ecology of Animals SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk

O. Polenogova

Institute of Systematics and Ecology of Animals SB RAS

编辑信件的主要联系方式.
Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk

参考

  1. Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ (2011) Acquired antibiotic resistance genes: Аn overview. Front Microbiol 2: 203. https://doi.org/10.3389/fmicb.2011.00203
  2. Khmaissa M, Zouari-Mechichi H, Sciara G, Record E, Mechichi T (2024) Pollution from livestock farming antibiotics an emerging environmental and human health concern: А review. J Hazard Mater Advanc 13: 100410. https://doi.org/10.1016/j.hazadv.2024.100410
  3. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22(9): 536–545. https://doi.org/10.1016/j.tim.2014.05.005
  4. Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, Gao L, Li R, Huang H, Zeng G (2023) Antibiotic resistance in soil-plant systems: А review of the source, dissemination, influence factors, and potential exposure risks. Sci Total Environment 869: 161855. https://doi.org/10.1016/j.scitotenv.2023.161855
  5. Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 7(6): 180. https://doi.org/10.3390/microorganisms7060180
  6. He LY, He LK, Liu YS, Zhang M, Zhao JL, Zhang QQ, Ying GG (2019) Microbial diversity and antibiotic resistome in swine farm environments. Sci Total Environment 685: 197–207. https://doi.org/10.1016/j.scitotenv.2019.05.369
  7. Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol 10: 338. https://doi.org/10.3389/fmicb.2019.00338
  8. Grenni, P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: A review. Microchem J 136: 25–39. https://doi.org/10.1016/j.microc.2017.02.006
  9. Sugio A, Dubreuil G, Giron D, Simon JC (2015) Plant-insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J Exp Botan 66(2): 467–478. https://doi.org/10.1093/jxb/eru435
  10. Minard G, Kahilainen A, Biere A, Pakkanen H, Mappes J, Saastamoinen M (2022) Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant. Funct Ecol 36(11): 2873–2888. https://doi.org/10.1111/1365-2435.14177
  11. Martínez JL, Rojo F (2011) Metabolic regulation of antibiotic resistance. Federat Eur Microbiol Soc Microbiol Rev 35(5): 768–789. https://doi.org/10.1111/j.1574-6976.2011.00282.x
  12. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4: 47. https://doi.org/10.3389/fmicb.2013.00047
  13. Gupta A, Nair S (2020) Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol 11: 1357. https://doi.org/10.3389/fmicb.2020.01357
  14. Pereira EJ, Lang BA, Storer NP, Siegfried BD (2008) Selection for Cry1F resistance in the European corn borer and cross-resistance to other Cry toxins. Entomol Exp Appl 126: 115–121. https://doi.org/10.1111/j.1570-7458.2007.00642.x
  15. Gong L, Kang S, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Akami M, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y (2020) Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella (L.). Toxins 12(2): 76. https://doi.org/10.3390/toxins12020076
  16. Sun D, Jeannot K, Xiao Y, Knapp CW (2019) Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol 10: 1933. https://doi.org/10.3389/fmicb.2019.01933
  17. Matamoros V, Casas ME, Mansilla S, Tadić Đ, Cañameras N, Carazo N, Portugal J, Piña B, Díez S, Bayona JM (2022) Occurrence of antibiotics in Lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: Crop and human health implications. J Hazard Mater 436: 129044. https://doi.org/10.1016/j.jhazmat.2022.129044
  18. Wilkins RM (2017) Insecticide resistance and intracellular proteases. Pest Management Sci 73(12): 2403–2412. https://doi.org/10.1002/ps.4646
  19. Vertyporokh L, Wojda I (2017) Expression of the insect metalloproteinase inhibitor IMPI in the fat body of Galleria mellonella exposed to infection with Beauveria bassiana. Acta Biochim Polonica 64(2): 273–278. https://doi.org/10.18388/abp.2016_1376
  20. Mendoza-Almanza G, Esparza-Ibarra EL, Ayala-Luján JL., Mercado-Reyes M, Godina-González S, Hernández-Barrales M, Olmos-Soto J (2020) The cytocidal spectrum of Bacillus thuringiensis toxins: From insects to human cancer cells. Toxins 12(5): 301. https://doi.org/10.3390/toxins12050301
  21. Bravo A, Pacheco S, Gómez I, Soberón M (2023) Mode of action of Bacillus thuringiensis Cry pesticidal proteins. Advanc Insect Physiol 65: 55–92. https://doi.org/10.1016/bs.aiip.2023.09.003
  22. Keller M, Sneh B, Strizhov N, Prudovsky E, Regev A, Koncz C, Schell J, Zilberstein A (1996) Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem Mol Biol 26(4): 365–373. https://doi.org/10.1016/0965-1748(95)00102-6
  23. Loseva O, Ibrahim M, Candas M, Koller CN, Bauer LS, Bulla LAJr (2002) Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: Implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochem Mol Biol 32(5): 567–577. https://doi.org/10.1016/s0965-1748(01)00137-0
  24. Akbar SMD, Jaba J, Regode V, Siva Kumar G, Sharma HC (2018) Plant protease inhibitors and their interactions with insect gut proteinases. In: Emani C. (ed) The biology of plant-insect interactions: A compendium for the plant biotechnologist. CRC Press. New York. 1–47. https://doi.org/10.1201/9781315119571-1
  25. Lopes FC, Martinelli AHS, John EBO, Ligabue-Braun R (2021) Microbial hydrolytic enzymes: Powerful weapons against insect pests. In: Khan MA, Ahmad W (eds) Microbes for sustainable insect pest management. Sustainability in Plant and Crop Protection. Springer/Cham. 1–31. https://doi.org/10.1007/978-3-030-67231-7_1
  26. Pereira TC, de Barros PP, Fugisaki LRO, Rossoni RD, Ribeiro FC, de Menezes RT, Junqueira JC, Scorzoni L (2018) Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J Fungi 4(4): 128. https://doi.org/10.3390/jof4040128
  27. Asai M, Sheehan G, Li Y, Robertson BD, Kavanagh K, Langford PR, Newton SM (2021) Innate immune responses of Galleria mellonella to Mycobacterium bovis BCG challenge identified using proteomic and molecular approaches. Front Cell Infect Microbiol 11: 619981. https://doi.org/10.3389/fcimb.2021.619981
  28. Клементьева ТН, Поленогова ОВ, Глупов ВВ (2022) Влияние антибиотика на микробиоту кишечника Galleria mellonella, активность пищеварительных и антиоксидантных ферментов. Евразиат энтомол журн 21(5): 265–271. [Klementeva TN, Polenogova OV, Glupov VV (2022) Effect of an antibiotic on gut microbiota and activity of digestive and antioxidant enzymes of Galleria mellonella. Euroas Entomol J 21(5): 265–271. (In Russ)]. https://doi.org/10.15298/euroasentj.21.5.03
  29. Polenogova OV, Klementeva TN, Kabilov MR, Alikina TY, Krivopalov AV, Kruykova NA, Glupov VV (2023) A diet with amikacin changes the bacteriobiome and the physiological state of Galleria mellonella and сauses its resistance to Bacillus thuringiensis. Insects 14: 889. https://doi.org/10.3390/insects14110889
  30. Kryukova NA, Mozhaytseva KA, Rotskaya UN, Glupov VV (2020) Galleria mellonella larvae fat body disruption (Lepidoptera: Pyralidae) caused by the venom of Habrobracon brevicornis (Hymenoptera: Braconidae). Archiv Insect Biochem Physiol 106(1): E21746. https://doi.org/10.1002/arch.21746
  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685. https://doi.org/10.1038/227680a0
  32. Garcı́a-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analyt Biochem 214: 65–69. https://doi.org/10.1006/abio.1993.1457
  33. Frolova TV, Izvekov EI, Solovyev MM, Izvekova GI (2019) Activity of proteolytic enzymes in the intestine of bream Abramis brama infected with cestodes Caryophyllaeus laticeps (Cestoda, Caryophyllidea). Compar Biochem Physiol 235: 38–45. https://doi.org/10.1016/j.cbpb.2019.05.009
  34. Irie S, Sezaki M (1983) A quantitative determination of the relative amount of histones in polyacrylamide gel by silver stain. Analyt Biochem 134(2): 471–478. https://doi.org/10.1016/0003-2697(83)90325-1
  35. Elpidina EN, Vinokurov KS, Gromenko VA, Rudenskaya YA, Dunaevsky YE, Zhuzhikov DP (2001) Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch Insect Biochem Physiol 48(4): 206–216. https://doi.org/10.1002/arch.10000
  36. Gatehouse JA (2002) Plant resistance towards insect herbivores: A dynamic interaction. New Phytologist 156(2): 145–169. https://doi.org/10.1046/j.1469-8137.2002.00519.x
  37. Muyima NY, Zamxaka M, Mazomba NT (2001) Comparative evaluation of pectolytic and proteolytic enzyme production by free and immobilized cells of some strains of the phytopathogenic Erwinia chrysanthemi. J Industr Microbiol Biotechnol 27(4): 215–219. https://doi.org/10.1038/sj.jim.7000172
  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  39. Bown DP, Wilkinson HS, Gatehouse JA (2004) Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol Entomol 29(3): 278–290. https://doi.org/10.1111/j.0307-6962.2004.00402.x
  40. Rahman M, Glatz R, Roush R, Schmidt O (2011) Developmental penalties associated with inducible tolerance in Helicoverpa armigera to insecticidal toxins from Bacillus thuringiensis. Appl Environment Microbiol 77(4): 1443–1448. https://doi.org/10.1128/AEM.01467-10
  41. Dubovskiy IM, Grizanova EV, Whitten MM, Mukherjee K, Greig C, Alikina T, Kabilov M, Vilcinskas A, Glupov VV, Butt TM (2016) Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7(8): 860–870. https://doi.org/10.1080/21505594.2016.1164367
  42. Fathipour Y, Sedaratian A, Bagheri A, Talaei-Hassanlouei R (2019) Increased food utilization indices and decreased proteolytic activity in Helicoverpa armigera larvae fed sublethal Bacillus thuringiensis-treated diet. Physiol Entomol 44: 178–186. https://doi.org/10.1111/phen.12288
  43. Forcada C, Alcácer E, Garcerá MD, Martínez R (1996) Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Archiv Insect Biochem Physiol 31(3): 257–272. https://doi.org/10.1002/(sici)1520-6327(1996)31:3<257::aid-arch2>3.0.co;2-v
  44. Jurat-Fuentes JL, Crickmore N (2017) Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J Invertebr Pathol 142: 5–10. https://doi.org/10.1016/j.jip.2016.07.018
  45. Chikate YR, Tamhane VA, Joshi RS, Gupta VS, Giri AP (2013) Differential protease activity augments polyphagy in Helicoverpa armigera. Insect Mol Biol 22: 258–272. https://doi.org/10.1111/imb.12018
  46. Mahdavi A, Ghadamyari M, Sajedi RH, Sharifi M, Kouchaki B (2013) Identification and partial characterization of midgut proteases in the lesser mulberry pyralid, Glyphodes pyloalis. J Insect Sci 13: 81. https://doi.org/10.1673/031.013.8101
  47. Coates BS, Hellmich RL, Lewis LC (2006) Sequence variation in trypsin- and chymotrypsin-like cDNAs from the midgut of Ostrinia nubilalis: Мethods for allelic differentiation of candidate Bacillus thuringiensis resistance genes. Insect Mol Biol 15(1): 13–24. https://doi.org/10.1111/j.1365-2583.2006.00598.x
  48. Candas M, Loseva O, Oppert B, Kosaraju P, Bulla LAJr (2003) Insect resistance to Bacillus thuringiensis: Аlterations in the indian meal moth larval gut proteome. Mol Cell Proteom 2(1): 19–28. https://doi.org/10.1074/mcp.m200069-mcp200
  49. Talaei-Hassanloui R, Bakhshaei R, Hosseininaveh V, Khorramnezhad A (2014) Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. kurstaki. Front Physiol 4: 406. https://doi.org/10.3389/fphys.2013.00406
  50. Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272(38): 23473–23476. https://doi.org/10.1074/jbc.272.38.23473
  51. Wang G, Liu C, Xia Q, Zha X, Chen J, Jiang L (2008) Cathepsin B protease is required for metamorphism in silkworm, Bombyx mori. Insect Sci 15: 201–208. https://doi.org/10.1111/j.1744-7917.2008.00201.x
  52. Jin BR (2009) Expression profile of cathepsin B in the fat body of Bombyx mori during metamorphosis. Comparative biochemistry and physiology. Biochem Mol Biol 154(2): 188–194. https://doi.org/10.1016/j.cbpb.2009.06.002
  53. Zhang K, Su J, Chen S, Yu S, Tan J, Xu M, Liang H, Zhao Y, Chao H, Yang L, Cui H (2015) Molecular cloning, characterization and expression analysis of cathepsin O in silkworm Bombyx mori related to bacterial response. Mol Immunol 66(2): 409–417. https://doi.org/10.1016/j.molimm.2015.04.008
  54. Oppert B (1999) Protease interactions with bacillus thuringiensis insecticidal toxins. Arch Insect Biochem Physiol 42(1): 1–12. https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<1::AID-ARCH2>3.0.CO;2-#
  55. Nawaz F, Khan MN, Javed A, Ahmed I, Ali N, Ali MI, Bakhtiar SM, Imran M (2019) Genomic and functional characterization of Enterococcus mundtii QAUEM2808, isolated from artisanal fermented milk product dahi. Front Microbiol 10: 434. https://doi.org/10.3389/fmicb.2019.00434
  56. Ferreira A, Canal N, Morales DL, Fuentefria D, Corção G (2007) Characterization of enterocins produced by Enterococcus mundtii isolated from humans feces. Braz Arch Biol Technol 50: 249–258.
  57. Ramakrishnan V, Balakrishnan B, Rai AK, Narayan B, Halami PM (2012) Concomitant production of lipase, protease and enterocin by Enterococcus faecium NCIM5363 and Enterococcus durans NCIM5427 isolated from fish processing waste. Int Aquatic Res 4(1): 14. https://doi.org/10.1186/2008-6970-4-14
  58. Pereira EJ, Siqueira HA, Zhuang M, Storer NP, Siegfried BD (2010) Measurements of Cry1F binding and activity of luminal gut proteases in susceptible and Cry1F resistant Ostrinia nubilalis larvae (Lepidoptera: Crambidae). J Invertebr Pathol 103: 1–7. https://doi.org/10.1016/j.jip.2009.08.014

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Survival of Galleria mellonella larvae of the native strain (N) and the strain of insects reared on a diet with an antibiotic (R) after per os exposure to Bacillus thuringiensis bacteria. Letters a and b indicate intergroup differences calculated using the Log-rank test (p < 0.001).

下载 (144KB)
3. Fig. 2. Zymogram (SDS-PAGE) of homogenates of the midgut section of the wax moth Galleria mellonella: control samples of the native line (N-C) and the line of insects grown on a diet with an antibiotic (R-C), as well as 48 h after per os exposure to Bacillus thuringiensis (Bt) bacteria of the native line (N-Bt) and the line of larvae on a diet with an antibiotic (R-Bt). M – molecular weight standards (Servicebio, China).

下载 (291KB)
4. Fig. 3. Proteolytic enzyme activities in midgut homogenates of wax moth Galleria mellonella larvae of the native line (N) and the line of insects reared on an antibiotic diet (R) after per os exposure to Bacillus thuringiensis (Bt) bacteria. (a) – Total proteolytic enzymes; (b) – PMSF (serine protease inhibitor); (c) – E-64 (cysteine protease inhibitor); (d) – EDTA (metalloprotease inhibitor). Different letters (A–C) indicate significant intergroup differences within one time point, calculated using the Kruskal–Wallis test followed by Dunn’s test (p < 0.05).

下载 (217KB)

版权所有 © Russian Academy of Sciences, 2025