Сравнительная эффективность добавок гидрофобизирующего и кристаллизационного действия на свойства гипсоцементно-пуццоланового вяжущего и бетона на его основе
- Авторы: Кайс Х.А.1, Морозова Н.Н.2, Хохряков О.В.2
-
Учреждения:
- Университет Саны
- Казанский государственный архитектурно-строительный университет
- Выпуск: № 11 (2024)
- Страницы: 63-72
- Раздел: Статьи
- URL: https://kazanmedjournal.ru/0585-430X/article/view/643196
- DOI: https://doi.org/10.31659/0585-430X-2024-830-11-63-72
- ID: 643196
Цитировать
Полный текст



Аннотация
Водостойкость бетонов на основе гипсоцементно-пуццоланового вяжущего (ГЦПВ) играет важнейшую роль в обеспечении долговечности изделий и конструкций, поэтому поиск новых способов ее повышения является одной из ключевых задач для этих материалов. Сегодня наибольшее распространение получил способ модификации ГЦПВ-бетона химическими добавками, которые относятся к классу гидрофобизирующих по ГОСТ 24211–2008 «Добавки для бетонов и строительных растворов. Общие технические условия», придающие ему водоотталкивающие свойства. Однако в последнее время, особенно за рубежом, становятся востребованными так называемые гидрофильные кристаллические добавки, которые применяют для повышения марки по водонепроницаемости бетона. Оно достигается кольматацией его микроструктуры игольчатыми новообразованиями, образующимися при химическом взаимодействии компонентов добавки с продуктами гидратации клинкерных минералов цементного вяжущего. В работе проведена сравнительная оценка эффективности шести видов зарубежных химических добавок, относящихся к классу гидрофобных и гидрофильных, на такие свойства ГЦПВ-бетона как прочность, плотность, водопоглощение, водостойкость по коэффициенту размягчения. Установлено, что наибольшую эффективность для ГЦПВ-бетона показала гидрофильная кристаллическая добавка «Flocrete WP Crystal», которая при дозировке 2% от массы вяжущего существенно повысила коэффициент размягчения (1,09) и снизила водопоглощение (3,2%) в сравнении с бездобавочным ГЦПВ-бетоном (0,89 и 7,2%, соответственно). Очевидно, это позволит повысить долговечность ГЦПВ-бетона и открыть для него новые возможности практического применения в строительстве.
Ключевые слова
Полный текст

Об авторах
Хамза Абдулмалек Кайс
Университет Саны
Автор, ответственный за переписку.
Email: hamza.qais@mail.ru
исследователь
Йемен, 13064, г. СанаН. Н. Морозова
Казанский государственный архитектурно-строительный университет
Email: hamza.qais@mail.ru
канд. техн. наук
Россия, 420043, г. Казань, ул. Зеленая, 1О. В. Хохряков
Казанский государственный архитектурно-строительный университет
Email: hamza.qais@mail.ru
д-р техн. наук
Россия, 420043, г. Казань, ул. Зеленая, 1Список литературы
- Хозин В.Г. Перспективы развития отрасли строительных материалов в свете использования вторичных ресурсов // Полимеры в строительстве: научный интернет-журнал. 2023. № 1 (11). С. 22–29. EDN: NEVNVS
- Коновалов Н.В., Вдовин Е.А. Дорожные модифицированные минеральные материалы, укрепленные портландцементом // Автомобильные дороги и транспортная инфраструктура. 2023. № 4 (4). С. 14–22. EDN: QOIDGD
- Lim S., Kawashima S. Mechanisms underlying crystalline waterproofing through microstructural and phase characterization. Journal of Materials in Civil Engineering. 2019. Vol. 31. 04019175. https:// doi.org/10.1061/(ASCE)MT.1943-5533.0002752
- Chakraborty S., Mandal R., Chakraborty S., Guadagnini M., Pilakoutas K. Chemical attack and corrosion resistance of concrete prepared with electrolyzed water. Journal of Materials Research and Technology. 2021. Vol. 11, pp. 1193–1205. https:// doi.org/10.1016/j.jmrt.2021.01.101
- Smitha M.P., Suji D., Shanthi M., Adesina A. Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete. Cleaner Materials. 2022. Vol. 3. 100050. https://doi.org/10.1016/j.clema.2022.100050
- Ферронская А.В., Коровяков В.Ф., Баранов И.М., Бурьянов А.Ф., Лосев Ю.Г., Поплавский В.В., Шишин А.В. Гипс в малоэтажном строительстве. М.: АСВ. 2008. 240 с.
- Бабков В.В., Латыпов В.М., Ломакина Л.Н., Шигапов Р.И. Модифицированные гипсовые вяжущие повышенной водостойкости и гипсокерамзито-бетонные стеновые блоки для малоэтажного жилищного строительства на их основе // Строительные материалы. 2012. № 7. С. 4–8.
- Пуценко К.Н., Балабанов В.Б. Перспективы развития и применения сухих строительных смесей на основе гипса // Вестник иркутского государственного технического университета. 2015. № 7 (102). С. 148–154.
- Изотов В.С., Мухаметрахимов Р.Х., Галаутдинов А.Р. Исследование влияния активных минеральных добавок на реологические и физико-механические свойства гипсоцементно-пуццоланового вяжущего // Строительные материалы. 2015. № 5. С. 20–24.
- Чернышева Н.В. Водостойкие гипсовые композиционные материалы с применением техногенного сырья: Дис. … канд. техн. наук. Белгород. 2014. 434 с.
- Сагдатуллин Д.Г., Морозова Н.Н., Хозин В.Г. Реологические характеристики водных суспензий композиционного гипсового вяжущего и его компонентов // Известия КГАСУ. 2009. № 2 (12). С. 263–268. EDN: KZHGWT
- Ибрагимов Р.А., Потапова Л.И., Королев Е.В. Исследование структурообразования активированного наномодифицированного цементного камня методом ИК-спектроскопия // Известия КГАСУ. 2021. № 3 (57). С. 41–49. EDN: XHUPYY. https://doi.org/10.52409/20731523_2021_3_41
- Халиуллин М.И., Нуриев М.И., Рахимов Р.З., Гайфуллин А.Р. Влияние пластифицирующих добавок на свойства гипсоцементнопуццоланового вяжущего // Вестник Казанского технологического университета. 2015. Т. 18. № 6. С. 119–122.
- Мухаметрахимов Р.Х., Галаутдинов А.Р. Влияния пластифицирующих добавок на основные свойства гипсоцементно-пуццоланового вяжущего на основе низкомарочного и техногенного сырья // Известия КГАСУ. 2016. № 4 (38). C. 382–387.
- Ермилова Е.Ю., Камалова З.А. Композиционные портландцементы с комплексными минеральными добавками как решение проблемы утилизации техногенных отходов промышленности // Строительные конструкции, здания и сооружения. 2023. № 2 (3). С. 4–10. EDN: KANWFM
- Мухаметрахимов Р.Х., Галаутдинов А.Р., Потапова Л.И., Гарафиев А.М. Исследование структурообразования модифицированного шунгитсодержащего цементного камня методом ИК-спектроскопии // Известия КГАСУ. 2021. № 4 (58). С. 70–81. EDN: NXFXLA. https://doi.org/10.52409/20731523_2021_4_70
- Потапова Л.И., Хамза Абдулмалек Кайс, Галиев Т.Ф. Влияние добавок поликарбоксилатного типа на технологические свойства ГЦПВ // Влияние науки на инновационное развитие. 2016. № 6. С. 134–137.
- Sideris K.K., Chatzopoulos A., Tassos C., Manita P. Durability of concretes prepared with crystalline admixtures. MATEC Web of Conferences. 2019. Vol. 289. 09003. https://doi.org/10.1051/matecconf/201928909003
- Cuenca E., Messene A., Ferrara L. Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Construction and Building Materials. 2021. Vol. 266. 121447. https://doi.org/10.1016/j.conbuildmat.2020.121447.
- Pazderka J., Hájková E. The speed of the crystalline admixture’s waterproofing effect in concrete. Key Engineering Materials. 2016. Vol. 722, pp. 108–112. https://doi.org/10.4028/www.scientific.net/KEM.722.108
- Смирнов Д.С., Мавлиев Л.Ф., Хузиахметова К.Р., Мотыгуллин И.Р. Влияние минеральной добавки на основе молотого доменного шлака на свойства бетона и бетонных смесей // Известия КГАСУ. 2022. № 4 (62). C. 61–69. EDN: KQDLZR. https://doi.org/10.52409/20731523_2022_4_61
- Reiterman P., Pazderka, J. Crystalline coating and its influence on the water transport in concrete. Advances in Civil Engineering. 2016. Vol. 11–12. 2513514. https://doi.org/10.1155/2016/2513514
- Ferrara L., Krelani V., Moretti F. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self-healing. Smart Materials and Structures. 2016. Vol. 25. No. 8. 084002. http://dx.doi.org/10.1088/0964-1726/25/8/084002
- Yildirim M.,. Özhan H.B. Effect of permeability-reducing admixtures on concrete properties at different cement dosages. Journal of Innovative Science and Engineering (JISE). 2023. No. 7 (1), рр. 48–59. https://doi.org/10.38088/jise.1174927
- Hassani M.E., Vessalas K., Sirivivatnanon V., Baweja D. Influence of permeability-reducing admixtures on water penetration in concrete. ACI Materials Journal. 2017. No. 114 (6), рр. 911–922. https:// doi.org/10.1016/j.cement.2021.100016
- Кожухова М.И., Чулкова И.Л., Хархардин А.Н., Соболев К.Г. Оценка эффективности применения гидрофобных водных эмуль- сий с содержанием нано- и микроразмерных частиц для модификации мелкозернистого бетона // Строительные материалы. 2017. № 5. С. 92–97. https:// doi.org/10.31659/0585-430X-2017-748-5-92-97
- Вдовин Е.А., Строганов В.Ф., Мавлиев Л.Ф., Буланов П.Е. Исследование влияния кремнийорганических соединений на показатели стандартного уплотнения и физико-механические свойства цементогрунта // Известия КГАСУ. 2014. № 4 (30). С. 255–261.
- Khatib J.M, Clay R.M. Absorption characteristics of metakaolin concrete. Cement and Concrete Research. 2004. Vol. 34, pp. 19–29. https://doi.org/10.1016/S0008-8846(03)00188-1
- García Calvo J.L., Moreno M.S., Carballosa P., Pedrosa F., Tavares F. Improvement of the concrete permeability by using hydrophilic blended additive. Materials (Basel). 2019. Vol. 12. No. 15. 2384. https://doi.org/10.3390/ma12152384
- Al-Kheetan M.J., Rahman M.M., Chamberlain D.A. A novel approach of introducing crystalline protection material and curing agent in fresh concrete for enhancing hydrophobicity. Construction and Building Materials. 2018. Vol. 160, pp. 644–652. https:// doi.org/10.1016/j.conbuildmat.2017.11.108
- Leemann A., Shi Z., Wyrzykowski M, Winnefeld F. Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Materials&Design. 2020. Vol. 195. 109066 (26 p). https://doi.org/10.1016/j.matdes.2020.109066
- Zheng K., Yang X., Chen R.; Xu L. Application of capillary crystalline material to enhance cement grout for sealing tunnel leakage. Construction and Building Materials. 2019. Vol. 214, pp. 497–505. https:// doi.org/10.1016/j.conbuildmat.2019.04.095
- Zhang Y., Du X., Li Y.,Yang F., and Li Z. Research on cementitious capillary crystalline waterproofing coating for underground concrete works. Advanced Materials Research. 2012. Vol. 450–451, pp. 286–290. http://dx.doi.org/10.4028/scientific5/AMR.450-451.286
- Pazderka J. Crystalline coating or crystalline admixture? Concrete. 2014. No. 48 (3), pp. 20–21. https://doi.org/10.14311/AP.2016.56.0306
- Wang K., Hu T., Xu S. Influence of permeated crystalline waterproof materials on impermeability of concrete. Advanced Materials Research. 2012. Vol. 446–449, pp. 954–960. https://doi.org/10.4028/www.scientific.net/AMR.446-449.954
- Кожухова М.И., Строкова В.В., Соболев К.С. Особенности гидрофобизации мелкозернистых бетонных поверхностей // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2014. № 4. С. 33–35.
- Массалимов И.А. и др. Гидрофобизация плотного и мелкозернистого бетонов полисульфидными растворами // Нанотехнологии в строительстве: научный интернет-журнал. 2016. Т. 8. № 5. С. 85–99.
- Соловьев В.Г., Швецова В.А. Объемная гидрофобизация растворных смесей. Актуальные проблемы строительной отрасли и образования – 2021: Cборник докладов II Национальной научной конференции. Москва. 2022. С. 313–317.
- Huo J., Wang Z., Guo H., Wei Y. Hydrophobicity improvement of cement-based materials incorporated with ionic paraffin emulsions (IPEs). Journal Materials. 2020. No. 13. 3230. https://doi.org/10.1016/j.conbuildmat.2021.123951
- Oliveira A., Gomes O., Ferrara L., Fairbairn E., Filho R. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. Journal of Building Engineering. 2021. Vol. 41. 102400. https://doi.org/10.1016/j.jobe.2021.102400
- Talero R., Pedrajas C., Gonz M.,´ Alez Aramburo C., Blazquez A., ´ Rahhal V. Role of the filler on Portland cement hydration at very early ages: rheological behaviour of their fresh cement pastes. Construction and Building Materials. 2017. Vol. 151, pp. 939–949. https://doi.org/10.1016/j.conbuildmat.2017.06.006
- Teng L.W., Lin W.T., Chen J., and Cheng A., Hsu H.M. The component analysis of penetration sealer materials. Advanced Materials Research. 2013. Vol. 842, pp. 74–77. https://doi.org/10.4028/www.scientific.net/AMR.842.74
- de Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Darquennes A., Davies R., Ferrara L., Jefferson T., et al. A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 2018. No. 5 (17). 1800074. https://doi.org/10.1002/admi.201800074
- Хамза Абдулмалек Кайс, Морозова Н.Н. Влияние пластифицирущих добавок различного состава на свойства комплексного гипсоцементно-пуццоланового вяжущего // Известия высших учебных заведений. Строительство. 2024. № 8–24. С. 35–43.
- Morozova N., Kais K., Gilfanov R. Influence of the fractional composition of the aggregate on the technological and strength properties of HCPV concrete. AIP Conference Proceedings. 2022. Vol. 32434. Iss. 1. https://doi.org/10.1063/5.0091723
Дополнительные файлы
