Perspectives of electron-beam and ion-beam lithography development in Russia
- Authors: Zaitsev S.I.1, Irzhak D.V.1, Il’in A.I.1, Knyazev M.A.1, Roshchupkin D.V.1, Grachev V.P.2, Kurbatov V.G.2, Malkov G.V.2
-
Affiliations:
- Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
- Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS
- Issue: Vol 54, No 4 (2025)
- Pages: 281-290
- Section: ЛИТОГРАФИЯ
- URL: https://kazanmedjournal.ru/0544-1269/article/view/690993
- DOI: https://doi.org/10.31857/S0544126925040024
- EDN: https://elibrary.ru/qgohjo
- ID: 690993
Cite item
Abstract
The development of national resists for electron-beam and ion-beam lithography processes is reviewed. Positive resists based on polymethyl methacrylate allow to create nanoscale structures. Moreover, the possibility of using a combination of the created resists as bilayer resist is demonstrated. The perspectives of the development of national processes of electron-beam and ion-beam lithography are also demonstrated. At the present moment own national technological processes of electron-beam and ion-beam lithography are at the stage of demonstrators. In the near future, national electron-beam and ion-beam lithography devices will be developed. It will take significantly more time to organize production of national ion-beam lithography equipment.
About the authors
S. I. Zaitsev
Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
Email: rochtch@iptm.ru
Moscow, Russia
D. V. Irzhak
Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
Email: rochtch@iptm.ru
Moscow, Russia
A. I. Il’in
Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
Email: rochtch@iptm.ru
Moscow, Russia
M. A. Knyazev
Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
Email: rochtch@iptm.ru
Moscow, Russia
D. V. Roshchupkin
Institute of Microelectronics Technology and High Purity Materials Russian Academy of Sciences
Email: rochtch@iptm.ru
Moscow, Russia
V. P. Grachev
Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS
Email: rochtch@iptm.ru
Черноголовка, Россия
V. G. Kurbatov
Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS
Email: rochtch@iptm.ru
Черноголовка, Россия
G. V. Malkov
Federalo Research Center of Problems of Chemical Physics and Medical Chemistry RAS
Author for correspondence.
Email: rochtch@iptm.ru
Черноголовка, Россия
References
- Buitrago E., Kulmala T.S., Felica R., Ekinci Y. Chapter 4 – EUV lithography process challenge. Frontiers of Nanoscience. Elsevier. 2016. V. 11. P. 135–176. https://doi.org/10.1016/B978-0-08-100354-1.00004-1
- Fu N., Liu Y., Ma X., Chen Z. EUV Lithography: State-of-the-Art Review // J. Microelectron. Manuf. 2019. V. 2. P. 19020202. https://doi.org/10.33079/jomm.19020202
- Grigorescu A.E., Hagen C.W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art // Nanotechnology. 2009. V. 20. P. 292001. https://doi.org/10.1088/0957-4484/20/29/292001
- Winston D., Cord B.M., Ming B., Bell D.C., DiNatale W.F., Stern L.A., Vladar A.E., Postek M.T., Mondol M.K., Yang J.K.W., Berggren K.K. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist // J. Vac. Sci. Technol. 2009. V. B27. P. 2702–2706. https://doi.org/10.1116/1.3250204
- Shabelnikova Ya.L., Zaitsev S.I. Ion-beam lithography: modelling and analytical description of the deposited in resist energy // Technical Physics. 2022. V. 67. P. 919–923. https://doi.org/10.21883/TP.2022.08.54550.104-22
- Joshi-Imre A., Bauerdick S. Direct-Write Ion Beam Lithograph // Journal of Nanotechnology. 2014. V. 2014. P. 170415. http://dx.doi.org/10.1155/2014/170415
- Jung Y., Cheng X. Dual-layer thermal nanoimprint lithography without dry etching // J. Micromech. Microeng. 2012. V. 22. P. 085011. https://doi.org/10.1088/0960-1317/22/8/085011
- Lan H., Ding Y., Liu H., Lu B. Development of a step micro-imprint lithography tool // J. Micromech. Microeng. 2007. V. 17. P. 2039–2048. https://doi.org/10.1088/0960-1317/17/10/016
- Sakharov S., Roshchupkin D., Emelin E., Irzhak D., Buzanov O., Zabelin A. X-ray diffraction investigation of high-temperature SAW sensor based on LGS crystal // Procedia Engineering. 2011. V. 25. P. 1020–1023.https://doi.org/10.1016/j.proeng.2011.12.251
- Grigoriev M., Fakhrtdinov R., Irzhak D., Firsov Al., Firsov An., Svintsov A., Erko A., Roshchupkin D. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source // Optics Communications. 2017. V. 385. P. 15–18.https://doi.org/10.1016/j.optcom.2016.10.024
- Irzhak D.V., Knyasev M.A., Punegov V.I., Roshchupkin D.V. X-ray diffraction by phase diffraction gratings // J. Appl. Cryst. 2015. V. 48. P. 1159–1164. https://doi.org/10.1107/S1600576715011607
- Brodie I., Muray J.J. The physics of microfabrictaion. Plenum Press. New York and London, 1982. https://doi.org/10.1007/978-1-4899-2160-4
Supplementary files
