YAP/TAZ signalling pathway in modelling human skin development using induced pluripotent cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Directed three-dimensional differentiation of induced human pluripotent cells resulted in dermal organoids with hair follicles, keratinising epidermis and a number of other skin derivatives formation. The analysis of gene expression at different stages of dermal organoid development revealed patterns of expression dynamics and co-expression patterns of YAP/TAZ signalling pathway components both in this model of three-dimensional differentiation and in the analysis of data from the differentiation of neural stem progenitor cells in the mesenchymal direction under two-dimensional conditions. Based on these results, we hypothesise that YAP together with TEAD3 regulates the formation of multilayered epidermis and hair follicles, while TAZ is predominantly involved in mesenchyme development and TEAD2 is involved in early neural crest differentiation. The YAP/TAZ signalling cascade is involved in epithelio-mesenchyme interactions in human skin development, as activity of this cascade has been detected in both epidermis and dermis. Thus, in the course of this work, the expression and coexpression patterns of members of the YAP/TAZ signalling cascade were characterised for the first time in the modelling of human facial scalp skin morphogenesis.

全文:

受限制的访问

作者简介

M. Pankratova

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: masha.pankratova25@bk.ru
俄罗斯联邦, Moscow

A. Riabinin

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: andrey951233@mail.ru
俄罗斯联邦, Moscow

Е. Kalabusheva

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: masha.pankratova25@bk.ru
俄罗斯联邦, Moscow

Z. Starinnov

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: masha.pankratova25@bk.ru
俄罗斯联邦, Moscow

E. Vorotelyak

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: masha.pankratova25@bk.ru
俄罗斯联邦, Moscow

参考

  1. Афанасьев Ю.И., Кузнецова С.Л., Юрина Н.А. Гистология, цитология и эмбриология. Москва: Медицина, 2004. 768 P.
  2. Chen D., Jarrell A., Guo C., Lang R., Atit R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation // Development (Cambridge, England). 2012. V. 139. № 8. P. 1522–1533.
  3. Akiyama M., Smith L.T., Yoneda K., Holbrook K.A., Hohl D., Shimizu H. Periderm cells form cornified cell envelope in their regression process during human epidermal development // Journal of Investigative Dermatology. 1999. V. 112. № 6. P. 903–909.
  4. Andl T., Reddy S.T., Gaddapara T., Millar S.E. WNT signals are required for the initiation of hair follicle development // Developmental cell. 2002. V. 2. № 5. P. 643–653.
  5. Ascensión A.M., Fuertes-Álvarez S., Ibañez-Solé O., Izeta A., Araúzo-Bravo M.J. Human dermal fibroblast subpopulations are conserved across single-cell RNA sequencing studies // Journal of Investigative Dermatology. 2021. V. 141. № 7. P. 1735–1744.e35.
  6. Beverdam A., Claxton C., Zhang X., James G., Harvey K.F., Key B. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis // The Journal of investigative dermatology. 2013. V. 133. № 6. P. 1497–1505.
  7. Botchkarev V.A., Flores E.R. p53/p63/p73 in the Epidermis in Health and Disease // Cold Spring Harbor Laboratory Press. 2014. V. 4. № 8. P. a015248.
  8. Cadau S., Rosignoli C., Rhetore S., Voegel J., Parenteau-Bareil R., Berthod F. Early stages of hair follicle development: a step by step microarray identity. // European journal of dermatology : EJD. 2013. № April.
  9. Driskell R.R., Giangreco A., Jensen K.B., Mulder K.W., Watt F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis // Development. 2009. V. 136. № 16. P. 2815–2823.
  10. Driskell R.R., Watt F.M. Understanding fibroblast heterogeneity in the skin // Trends in Cell Biology. 2015. V. 25. № 2. P. 92–99.
  11. Elbediwy A., Vincent-Mistiaen Z.I., Spencer-Dene B. et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis // Development (Cambridge, England). 2016. V. 143. № 10. P. 1674-1687.
  12. Fuchs E. Scratching the surface of skin development. Embryonic origins of skin epithelium // Nature. 2007. V. 445. P. 834–42.
  13. Goodnough L.H., Dinuoscio G.J., Atit R.P. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining wnt signaling responsiveness // Developmental Dynamics. 2016. V. 245. № 2. P. 144–156.
  14. He L., Yuan L., Sun Y., et al. Glucocorticoid receptor signaling activates TEAD4 to promote breast cancer progression // Cancer Research. 2019. V. 79. № 17. P. 4399–4411.
  15. Hindley C.J., Condurat A.L., Menon V., Thomas R., Azmitia L.M., Davis J.A., Pruszak J. The Hippo pathway member YAP enhances human neural crest cell fate and migration // Scientific Reports. 2016. V. 6. № March. P. 1–9.
  16. Huh S.H., Närhi K., Lindfors P.H., Häärä O., Yang L., Ornitz D.M., Mikkola M.L. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles // Genes & development. 2013. V. 27. № 4. P. 450–458.
  17. Kalabusheva E.P., Shtompel A.S., Rippa A.L., Ulianov S.V., Razin S.V., Vorotelyak E.A. A Kaleidoscope of keratin gene expression and the mosaic of its regulatory mechanisms // International Journal of Molecular Sciences. 2023. V. 24. № 6. P. 5603
  18. Karlsson L., Bondjers C., Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle // Development (Cambridge, England). 1999. V. 126. № 12. P. 2611–2621.
  19. Kumar D., Nitzan E., Kalcheim C. YAP promotes neural crest emigration through interactions with BMP and Wnt activities // Cell Communication and Signaling. 2019. V. 17. № 1. P. 1–17.
  20. Kypriotou M., Huber M., Hohl D. The human epidermal differentiation complex: Cornified envelope precursors, S100 proteins and the “fused genes” family // Experimental Dermatology. 2012. V. 21. № 9. P. 643–649.
  21. Lee J., Rabbani C.C., Gao H. et al. Hair-bearing human skin generated entirely from pluripotent stem cells // Nature. 2020. V. 582. № 7812. P. 399–404.
  22. Liu C.Y., Zha Z.Y., Zhou X. et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase // Journal of Biological Chemistry. 2010. V. 285. № 48. P. 37159–37169.
  23. Liu F., Lagares D., Choi K.M. et al. Translational research in acute lung injury and pulmonary fibrosis: mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis // American Journal of Physiology — Lung Cellular and Molecular Physiology. 2015. V. 308. № 4. P. L344.
  24. Liu Y., Wang G., Yang Y., Mei Z., Liang Z., Cui A., Wu T., Liu C.Y., Cui L. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner // Oncogene. 2016. V. 35. № 21. P. 2789–2800.
  25. Mendoza-Reinoso V., Beverdam A. Epidermal YAP activity drives canonical WNT16/β-catenin signaling to promote keratinocyte proliferation in vitro and in the murine skin // Stem Cell Research. 2018. V. 29. P. 15–23.
  26. Moya I.M., Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine // Nature Reviews Molecular Cell Biology. 2019. V. 20. № 4. P. 211–226.
  27. Myung P., Andl T., Atit R. The origins of skin diversity: lessons from dermal fibroblasts // Development (Cambridge). 2022. V. 149. № 23. P. dev200298.
  28. Pankratova M.D., Riabinin A.A., Butova E.A., Selivanovskiy A.V., Morgun E.I., Ulianov S.V., Vorotelyak E.A., Kalabusheva E.P. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate // International Journal of Molecular Sciences. 2024. V. 25. № 23. P. 12903.
  29. Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis // Frontiers in Cell and Developmental Biology. 2022. V. 10. № July. P. 1–8.
  30. Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond // Physiological Reviews. 2014. V. 94. № 4. P. 1287–1312.
  31. Plouffe S.W., Lin K.C., Moore J.L., Tan F.E., Ma S., Ye Z., Qiu Y., Ren B., Guan K.L. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell // Journal of Biological Chemistry. 2018. V. 293. № 28. P. 11230–11240.
  32. Pocaterra A., Romani P., Dupont S. YAP/TAZ functions and their regulation at a glance // Journal of Cell Science. 2020. V. 133. № 2. P. 1–9.
  33. Qin Z., He T., Guo C., Quan T. Age-related downregulation of CCN2 is regulated by cell size in a YAP/TAZ-dependent manner in human dermal fibroblasts: impact on dermal aging // JID innovations : skin science from molecules to population health. 2022. V. 2. № 3. P. 100111.
  34. Quan T., Shao Y., He T., Voorhees J.J., Fisher G.J. Reduced Expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin // The Journal of investigative dermatology. 2010. V. 130. № 2. P. 415.
  35. Ramovs V., Janssen H., Fuentes I., et al. Characterization of the epidermal-dermal junction in hiPSC-derived skin organoids // Stem Cell Reports. 2022. V. 17. № 6. P. 1279–1288.
  36. Ren C., Liu Q., Ma Y., Wang A., Yang Y., Wang D. TEAD4 transcriptional regulates SERPINB3/4 and affect crosstalk between keratinocytes and T cells in psoriasis // Immunobiology. 2020. V. 225. № 5. Р. 15206.
  37. Riabinin A., Kalabusheva E., Khrustaleva A. et al. Trajectory of hiPSCs derived neural progenitor cells differentiation into dermal papilla-like cells and their characteristics // Scientific Reports. 2023. V. 13. № 1. P. 1–12.
  38. Rishikaysh P., Dev K., Diaz D., Shaikh Qureshi W.M., Filip S., Mokry J. Signaling involved in hair follicle morphogenesis and development // International Journal of Molecular Sciences. 2014. V. 15. № 1. P. 1647–1670.
  39. Rognoni E., Walko G. The roles of YAP/TAZ and the hippo pathway in healthy and diseased skin // Cells. 2019. V. 8. № 5. Р. 411.
  40. Saint-Jeannet J.-P. Neural Crest induction and differentiation. New York: Springer Science & Business Media, 2006. 248 P.
  41. Schlegelmilch K., Mohseni M., Kirak O. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation // Cell. 2011. V. 144. № 5. P. 782.
  42. Shafiee A., Sun J., Ahmed I.A. et al. Development of physiologically relevant skin organoids from human induced pluripotent stem cells // Small. 2023. V. 2304879. P. 1–15.
  43. Silvis M.R., Kreger B.T., Lien W.H. et al. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1 // Science Signaling. 2011. V. 4. № 174. P. ra33.
  44. Soldatov R., Kaucka M., Kastriti M.E. et al. Spatiotemporal structure of cell fate decisions in murine neural crest // Science. 2019. V. 364. № 6444. Р. eaas9536.
  45. Totaro A., Castellan M., Battilana G., Zanconato F., Azzolin L., Giulitti S., Cordenonsi M., Piccolo S. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate // Nature Communications. 2017. V. 8. Р. 15206.
  46. Totaro A., Panciera T., Piccolo S. YAP/TAZ upstream signals and downstream responses // Nature Cell Biology. 2019. V. 20. № 8. P. 888–899.
  47. Vincent-Mistiaen Z., Elbediwy A., Vanyai H. et al. YAP drives cutaneous squamous cell carcinoma formation and progression // eLife. 2018. V. 7. P. 1–14.
  48. Walko G., Woodhouse S., Pisco A.O. et al. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells // Nature Communications. 2017. V. 8. P. 14744.
  49. Wang J., Xiao Y., Hsu C.W. et al. Yap and taz play a crucial role in neural crest-derived craniofacial development // Development (Cambridge). 2016. V. 143. № 3. P. 504–515.
  50. Woo J., Suh W. Hair growth regulation by fibroblast growth factor 12 (FGF12) // International Journal of Molecular Sciences. 2022. V. 23. № 16. P. 9467.
  51. Zhang H., Pasolli H.A., Fuchs E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin // Proceedings of the National Academy of Sciences of the United States of America. 2011. V. 108. № 6. P. 2270–2275.

补充文件

附件文件
动作
1. JATS XML
2. Supplementary
下载 (668KB)
3. Fig. 1. Experimental scheme.

下载 (412KB)
4. Fig. 2. Morphology of developing skin organoids at different stages during induced differentiation. Arrows indicate forming HF rudiments. Scale bars are given in each image (100 and 200 μm). Phase contrast microscopy.

下载 (510KB)
5. Fig. 3. Immunohistochemical detection of p63, Epcam at day 6 (a) and vimentin (Vim), K18, collagen IV and Sox2 at day 15 of differentiation (b) in skin organoids. Scale bars are given in each image (200 μm and 400 μm). Nuclei are stained with DAPI. Fluorescence microscopy.

下载 (583KB)
6. Fig. 4. Immunohistochemical detection of vimentin (Vim), K1 and K14 in skin organoids at day 29 (a), Twist1, Sox2 at day 60 (b) and Sox2 at day 72 of differentiation (c). DC – dermal condensate, DP – dermal papilla. Scale bars are given in each image (200 and 400 μm). Nuclei are stained with DAPI. Fluorescence microscopy.

下载 (564KB)
7. Fig. 5. Immunohistochemical detection of K15, K10, vimentin (Vim), K71, AE13, and loricrin in skin organoids at day 110 of differentiation. DL – differentiated layers, BS – basal layer, HS – hair shaft, IRS – inner root sheath. Scale bars are given in each image (100 and 400 μm). Nuclei are stained with DAPI. Fluorescence microscopy.

下载 (1MB)
8. Fig. 6. Results of identification of different cell populations in skin organoids based on spatial analysis of the transcriptome on days 29, 60, 72, 90, and 110 of differentiation. Top — distribution of cell population clusters in the section plane, bottom — clusters in two-dimensional t-SNE space. Scale bar 250 μm.

下载 (469KB)
9. Fig. 7. Violin plots showing the expression of YAP1 (a), TAZ (b), CYR61 (c), and CTGF (d) in isolated cell populations within skin organoids at five differentiation time points (days 29, 60, 72, 90, and 110). The height of the plot reflects the level of gene expression, and the width represents the percentage of cells in the population expressing the gene at a given level.

下载 (323KB)
10. Fig. 8. Violin plots showing the expression of TEAD1 (a), TEAD2 (b), TEAD3 (c), TEAD4 (d) in isolated cell populations within skin organoids at five differentiation time points (days 29, 60, 72, 90, and 110). The height of the graph reflects the level of gene expression, the width is the percentage of cells in the population expressing the gene at a given level.

下载 (274KB)
11. Fig. 9. Immunohistochemical detection of p63 and YAP in skin organoids at days 6, 29, 60, 72, and 110 of differentiation. Nuclei were stained with DAPI. Fluorescence microscopy. Scale bars are given in each image (50, 200, and 500 μm).

下载 (824KB)
12. Fig. 10. Immunohistochemical detection of p63 and TAZ in skin organoids at days 6, 29, 60, 72, and 110 of differentiation. Nuclei are stained with DAPI. Fluorescence microscopy. Scale bars are given in each image (50, 200, and 500 μm).

下载 (790KB)
13. Fig. 11. Immunohistochemical detection of collagen III, Twist1, and YAP (a) together with TAZ (b) in skin organoids at days 60 and 110 of organoid differentiation. Nuclei are stained with DAPI. Fluorescence microscopy. Scale bars are given in each image (100 and 500 μm).

下载 (1MB)
14. Fig. 12. Heat map illustrating co-expression of the major genes involved in the YAP/TAZ cascade at the same transcript capture sites in the epidermal, mesenchymal, dermal, and neuroglial clusters of organoids at days 6, 29, 60, 72, 90, and 110 of development. Co-expression levels are given as decimal fractions of 1, where 1 is 100% colocalization.

下载 (674KB)
15. Fig. 13. Heat map illustrating the expression of the main genes participating in the YAP/TAZ cascade for all samples (hIPSC-NSPC [negative control], hIPSC-DP after 2, 4, 6 and 8 weeks of differentiation and hDP [positive control]).

下载 (257KB)
16. Fig. 14. In the epidermal group of cells, the active form of YAP is localized in the nuclei at late stages of differentiation, where it forms a complex with TEAD3 and participates in the development of the epidermis and the epithelial part of the HF. In the dermal group, at late stages, TAZ is localized in the nuclei of fibroblasts, forming a complex with various TEADs and participating in the morphogenesis of the dermis. In the neuroglial group of cells as part of organoids and at different points of differentiation of hIPSC-NSPCs into hIPSC-DPs, the transcription factor YAP/TAZ-TEAD2 is involved in YAP/TAZ signaling.

下载 (471KB)

注意

1 Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0475145025020018


版权所有 © Russian Academy of Sciences, 2025