Existence of Two Solutions of the Inverse Problem for a Mathematical Model of Sorption Dynamics

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The inverse problem for a nonlinear mathematical model of sorption dynamics with an unknown variable kinetic coefficient is considered. A theorem on the existence of two solutions of the inverse problem is proved, and an iterative method for solving it is justified. An example of the application of the proposed method to the numerical solution of the inverse problem is given.

作者简介

A. Denisov

Lomonosov Moscow State University, Moscow, 119991, Russia

Email: den@cs.msu.ru
Москва, Россия

Chzhu Duntsin'

Lomonosov Moscow State University, Moscow, 119991, Russia

编辑信件的主要联系方式.
Email: zhudq1002@163.com
Москва, Россия

参考

  1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1999.
  2. Денисов А.М., Чжу Дунцинь. Обратная задача для математической модели динамики сорбции с переменным кинетическим коэффициентом // Вестн. Московского ун-та. Сер. 15. Вычислит. математика и кибернетика. 2022. № 4. С. 5-13.
  3. Денисов А.М., Туйкина С.Р. О некоторых обратных задачах неравновесной динамики сорбции // Докл. АН СССР. 1984. Т. 276. № 1. С. 100-102.
  4. Lorenzi A., Paparoni E. An inverse problem arising in the theory of absorption // Appl. Anal. 1990. V. 36. № 3. P. 249-263.
  5. Muraviev D.N., Chanov A.V., Denisov A.M., Omarova F., Tuikina S.R. A numerical method for calculating isotherms of ion exchange on impregnated sulfonate ion-exchangers based on data of dynamic experiments // Reactive Polymers. 1992. V. 17. № 1. P. 29-38.
  6. Denisov A.M., Lamos H. An inverse problem for a nonlinear mathematical model of sorption dynamics with mixed-diffusional kinetics // J. Inverse and Ill Posed Problems. 1996. V. 4. № 3. P. 191-202.
  7. Щеглов А.Ю. Метод решения обратной граничной задачи динамики сорбции с учётом диффузии внутри зерна // Журн. вычислит. математики и мат. физики. 2002. Т. 42. № 4. С. 580-590.
  8. Denisov A.M., Lorenzi A. Recovering an unknown coefficient in an absorption model with diffusion // J. Inverse and Ill Posed Problems. 2007. V. 15. № 6. P. 599-610.
  9. Tuikina S.R., Solov'eva S.I. Numerical solution of an inverse problem for a two-dimensional model of sorption dynamics // Comput. Math. and Model. 2012. V. 23. № 1. P. 34-41.
  10. Tuikina S.R. A numerical method for the solution of two inverse problems in the mathematical model of redox sorption // Comput. Math. and Model. 2020. V. 31. № 1. P. 96-103.
  11. Денисов А.М., Ефимов А.А. Итерационный метод численного решения обратной коэффициентной задачи для системы уравнений в частных производных // Дифференц. уравнения. 2020. Т. 56. № 7. С. 900-909.
  12. Денисов А.М. Существование и единственность решения одной системы нелинейных интегральных уравнений // Дифференц. уравнения. 2020. Т. 56. № 9. С. 1174-1181.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023