Existence of Sub-Lorentzian Longest Curves

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Sufficient conditions for the existence of optimal trajectories in general optimal
control problems with free terminal time as well as in sub-Lorentzian problems are obtained.

作者简介

Yu. Sachkov

Program Systems Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yusachkov@gmail.com
Pereslavl-Zalessky, Yaroslavl oblast, 152020 Russia

参考

  1. Wald R.M. General Relativity. Chicago, 1984.
  2. Beem J.K., Ehrlich P.E., Easley K.L. Global Lorentzian Geometry. Monographs Textbooks Pure Appl. Math. V. 202. New York; Basel; Hong Kong, 1996.
  3. M"uller O., S'anchez M. An Invitation to Lorentzian Geometry // Jahresber. Deutsch. Math. Ver. 2014. V. 115. P. 153-183.
  4. Montgomery R. A Tour of Subriemannnian Geometries, their Geodesics and Applications. Providence, 2002.
  5. Agrachev A., Barilari D., Boscain U. A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian Viewpoint. Cambridge, 2019.
  6. Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on $mathbb{R}^3.$ An estimate for the distance function // J. of Dynamical and Control Systems. 2006. V. 12. № 2. P. 145-160.
  7. Grochowski M. Geodesics in the sub-Lorentzian geometry // Bull. Polish. Acad. Sci. Math. 2002. V. 50. P. 161-178.
  8. Grochowski M. Normal forms of germs of contact sub-Lorentzian structures on $mathbb{R}^3.$ Differentiability of the sub-Lorentzian distance // J. Dynam. Control Systems. 2003. V. 9. № 4. P. 531-547.
  9. Grochowski M. Properties of reachable sets in the sub-Lorentzian geometry // J. Geom. Phys. 2009. V. 59. № 7. P. 885-900.
  10. Grochowski M. Reachable sets for contact sub-Lorentzian metrics on $mathbb{R}^3.$ Application to control affine systems with the scalar input // J. Math. Sci. 2011. V. 177. № 3. P. 383-394.
  11. Grochowski M. On the Heisenberg sub-Lorentzian metric on $mathbb{R}^3$ // Geometric Singularity Theory. Banach Center Publications. Warszawa, 2004. V. 65. P. 57-65.
  12. Chang D.-C., Markina I., Vasil'ev A. Sub-Lorentzian geometry on anti-de Sitter space // J. Math. Pures Appl. 2008. V. 90. P. 82-110.
  13. Korolko A., Markina I. Nonholonomic Lorentzian geometry on some H-type groups // J. Geom. Anal. 2009. V. 19. P. 864-889.
  14. Grong E., Vasil'ev A. Sub-Riemannian and sub-Lorentzian geometry on $SU(1, 1)$ and on its universal cover // J. Geom. Mech. 2011. V. 3. № 2. P. 225-260.
  15. Grochowski M., Medvedev A., Warhurst B. 3-dimensional left-invariant sub-Lorentzian contact structures // Differ. Geometry and its Appl. 2016. V. 49. P. 142-166.
  16. Jurdjevic V. Geometric Control Theory. Cambridge, 1997.
  17. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. M., 2005.
  18. Сачков Ю.Л. Введение в геометрическую теорию управления. М., 2021.
  19. Сачков Ю.Л. Лоренцева геометрия на плоскости Лобачевского // Мат. заметки. 2023. V. 114. № 1. P. 127-130.
  20. Bonnard B., Jurdjevic V., Kupka I., Sallet G. Transitivity of families of invariant vector fields on the semidirect products of Lie groups // Trans. Amer. Math. Soc. 1982. V. 271. № 2. P. 525-535.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023