ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF THE CAUCHY PROBLEM FOR A NONLINEAR EQUATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a nonlinear partial differential equation generalizing a damped sixth-order Boussinesq equation with double dispersion and the equation of transverse oscillations of a viscoelastic Voigt–Kelvin beam under the action of external and internal friction and whose deformation is considered taking into account the correction for the inertia of section rotation, sufficient conditions for the existence and exponential decay of a global solution of the Cauchy problem are found.

Sobre autores

Kh. Umarov

Chechen Academy of Sciences; Chechen State Pedagogical University

Email: umarov50@mail.ru
Grozny, Russia; Grozny, Russia

Bibliografia

  1. Kudryavtsev, L.D., Kurs matematicheskogo analiza (Course of Mathematical Analysis), vol. 1, Moscow: Yurait, 2009.
  2. Filippov, A.P., Kolebaniya deformiruyemykh sistem (Oscillations of Deformable Systems), Moscow: Machinostroenie, 1970.
  3. Erofeev, V.I., Kazhaev, V.V., and Semerikova, N.P., Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineynost’ (Waves in Rods. Dispersion. Dissipation. Nonlinearity), Moscow: Fizmatlit, 2002.
  4. Faradzhev, A.S., On a nonlocal inverse boundary value problem for the sixth-order Boussinesq equation with nonlocal time-integral conditions of the second kind, Applied Math. & Phys., 2022, vol. 54, no. 3, pp. 141–153.
  5. Zhou, J. Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source / J. Zhou, H. Zhang // J. Nonlin. Sci. — 2021. — V. 31, № 76. — P. 1–61.
  6. Dunford, N. and Schwartz, J.T., Linear Operators. Part I: General Theory, New York: Interscience, 1958.
  7. Vasilyev, V.V., Crane, S.G., and Piskarev, S.I., Operator semigroups, cosine operator functions and linear differential equations, VINITI: Results of Science and Technology. Series Math. Analysis, 1990, vol. 28, pp. 87–202.
  8. Иосида, К. Функциональный анализ / К. Иосида ; пер. с англ. В.М. Волосова. — М. : Мир, 1967. — 624 с.
  9. Yosida, K., Functional Analysis, Berlin; G¨ottingen; Heidelberg: Springer-Verlag, 1965.
  10. Travis, C.C. Cosine families and abstract nonlinear second order differential equations / C.C. Travis, G.F. Webb // Acta Math. Acad. Sci. Hungaricae. — 1978. — V. 32. — P. 75–96.
  11. Yuming Qin. Integral and Discrete Inequalities and their Applications. V. II: Nonlinear Inequalities / Yuming Qin. — Switzerland : Springer, 2016. — 1083 p.
  12. Benjamin, T.B. Model equations for long waves in nonlinear dispersive systems / T.B. Benjamin, J.L. Bona, J.J. Mahony // Philos. Trans. Roy. Soc. London. — 1972. — V. 272. — P. 47–78.
  13. Filatov, A.N. and Sharova, L.V., Integral’nyye neravenstva i teoriya nelineynykh kolebaniy (Integral Inequalities and the Theory of Nonlinear Oscillations), Moscow: Nauka, 1976.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024