Mikhail Bulgakov’s “The Master and Margarita” and Yury Trifonov’s “Preliminary Results”: Parallels and their linguistic analysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article compares Mikhail Bulgakov’s novel “The Master and Margarita” with Yury Trifonov’s novella “Preliminary Results”. More than 30 pairs of text fragments are identified in which narrative, stylistic, and lexical similarities emerge. The study attempts to formalise these parallels using several linguistic methods: statistical counts of lexical overlap, analysis of coinciding multi-word fragments, detection of shared low-frequency vocabulary, and automatic measurement of semantic proximity. None of the applied methods reveals a statistically significant influence of one text upon the other. The conclusion discusses the fundamental possibilities of formalising intuitively perceived parallels in works of fiction and outlines potential directions for further research of this kind.

作者简介

B. Iomdin

Käthe-Kollwitz-Gymnasium

Email: boris@iomdin.com
Berlin, Germany

M. Iomdin

Heinrich-Hertz-Gymnasium

Email: misha@iomdin.com
Berlin, Germany

参考

  1. Gelfond M. M., Mukhina A. A. “The Master and Margarita” and “Doctor Zhivago” in the story “Another life” by Yu. V. Trifonov. The New Philological Bulletin, 2024, 2(69): 181–190.
  2. Russian National Corpus. http://www.ruscorpora.ru.
  3. Eder et al. 2016 — Eder M., Rybicki J., Kestemont M. Stylometry with R: A package for computational text analysis. The R Journal, 2016, 8(1): 107–121.
  4. Neal et al. 2017 — Neal T., Sundararajan K., Fatima A., Yan Y., Xiang Y., Woodard D. Surveying stylometry techniques and applications. ACM Computing Surveys (CSuR), 2017, 50(6): 1–36.
  5. Savoy 2020 — Savoy J. Machine learning methods for stylometry. Cham: Springer, 2020.
  6. Timoneda, Vera 2025 — Timoneda J. C., Vera S. V. BERT, RoBERTa or DeBERTa? Comparing Performance Across Transformers Models in Political Science Text. The Journal of Politics 2025, 87(1): 347–364.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025