Characteristics of Scalar Frequency-Wave Spectrum of Wall Pressure Fluctuations at Gradient-Free Turbulent Boundary Layer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analysis of the basic properties of the scalar frequency-wave spectrum of turbulent pressures, representing the total energy of the wave components of the turbulent pressure field with a given wave vector modulus, has been carried out. Consideration of the scalar spectrum, which has independent applied significance, allows us to visualize the energy distribution of turbulent pressures in a wide range of frequencies and wave numbers. Based on well-known vector wave field models, relations are proposed for estimating the reduced scalar spectrum. The degree and nature of the parametric influence of the Mach and Reynolds numbers are determined.

Texto integral

Acesso é fechado

Sobre autores

E. Kudashev

Space Research Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: fmkdshv@gmail.com
Rússia, Moscow

L. Yablonik

Polzunov Scientific and Development Association on Research and Design of Power Equipment

Email: yablonik@gmail.com
Rússia, St. Petersburg

Bibliografia

  1. Кудашев Е.Б., Яблоник Л.Р. Модели и методы скалярной волновой фильтрации полей пристеночных турбулентных пульсаций давления // Акуст. журн. 2022. Т. 68. № 6. С. 670–678.
  2. Ефимцов Б.М. Критерии подобия спектров пристеночных пульсаций давления турбулентного пограничного слоя // Акуст. журн. 1982. Т. 28. № 4. С. 491–497.
  3. Смольяков А.В., Ткаченко В.М. Модели поля псевдозвуковых турбулентных пристеночных давлений и опытные данные // Акуст. журн. 1991. Т. 37. № 6. С. 1199–1207.
  4. Frendi A., Zhang M. A New Turbulent Wall-Pressure Fluctuation Model for Fluid-Structure Interaction // J. Vib. Acoust. 2020. V. 142. № 2. P. 021018. https://doi.org/10.1115/1.4045771
  5. Chase D.M. The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model // J. Sound Vib. 1987. V. 112. № 1. P. 125–147.
  6. Goody M. An empirical model of surface pressure fluctuations // AIAA J. 2004. V. 42. P. 1788–1794.
  7. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 744 с.
  8. Prigent S.L., Salze É., Bailly C. Deconvolution of wavenumber-frequency spectra of wall pressure fluctuations // AIAA J. 2020. V. 58. № 1. P. 164–173.
  9. Leclere Q., Dinsenmeyer A., Salze E., Antoni J. A comparison between different wall pressure measurement devices for the separation and analysis of TBL and acoustic contributions // Flinovia–Flow Induced Noise and Vibration Issues and Aspects-III. P. 181–206. Springer Nature Switzerland AG, 2021.
  10. Arguillat B., Ricot D., Robert G., Bailly C., Robert G. Measured wavenumber: Frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations // J. Acoust. Soc. Am. 2010. V. 128. P. 1647.
  11. Robin O., Moreau S., Berry A. Measurement of the wavenumber-frequency spectrum of wall pressure fluctuations: spiral-shaped rotative arrays with pinhole-mounted quarter inch microphone // 19th AI-AA/CEAS Aeroacoustics Conference May 27-29, 2013, Berlin, Germany (AIAA 2013-2058)
  12. Salze É., Bailly C., Marsden O., Jondeau E., Juvé D. An experimental investigation of wall pressure fluctuations beneath pressure gradients // AIAA AVIATION Forum. 21th AIAA/CEAS Aeroacoustics Conference, June 22-26th 2015, Dallas, Texas.
  13. Кудашев Е.Б., Яблоник Л.Р. Развитие экспериментальных исследований турбулентных пристеночных пульсаций давления. Критический анализ и обобщение накопленных опытных данных // Акуст. журн. 2021. Т. 67. № 6. С. 639–649.
  14. Howe M.S. Acoustics of Fluid-Structure Interactions. Cambridge University Press, 1998. 560 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Qualitative analysis of the properties of the scalar wave spectrum; 1 – curves of equal values of the frequency-wave spectrum; 2 – convective ridge (maximum values); 3 – integration contour corresponding to the maximum value of the scalar wave spectrum

Baixar (99KB)
3. Fig. 2. The given spectral dependences for different values of the dimensionless frequency. Models: (a) Smolyakova–Tkachenko [3]; (b) modified Efimtsova [2]; (c) Friendly–Zhang [4]. Values : 1 – 10; 2 – 1.0; 3 – 0.1. Curves:         ; —— ; ---- ; ••••••

Baixar (324KB)
4. Fig. 3. Curves of equal levels of the reduced scalar spectrum. The values of 10lgφ are shown. Models: (a) – Smolyakova–Tkachenko [3]; (b) – modified Efimtsova [2]; (c) – Friendly–Zhang [4]; (d) – approximation (10)

Baixar (288KB)
5. Fig. 4. Curves of equal levels of a dimensionless scalar spectrum. The values of 10lg are shown. Models: (a) – Smolyakova–Tkachenko [3]; (b) – modified Efimtsov [2]; (c) – Friendly–Zhang [4]; (d) – scalar model (10)

Baixar (327KB)
6. Fig. 5. Influence numbers Mach on dimensionless Urgell scalar Urgell spectrum . Wide model Chase [5]. Numerical values: (a) – 0.01 (dotted-0); (b – - 0.1; (C) - 0.3; (D) - 0.5

Baixar (353KB)
7. Fig. 6. The effect of the Reynolds number on a dimensionless scalar spectrum. Scalar model (10). RT values: -- 300; ---- 30

Baixar (180KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024