MICROHETEROGENITY OF LIQUID STEEL 12CR18NI9TI
- Authors: Shvetsov D.P.1,2, Tsepelev V.S.1, Sinitsin N.I.1, Chikova O.A.1, Vyukhin V.V.1
-
Affiliations:
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- LLC «Tsentr Tochnogo Lit’ya»
- Issue: No 5 (2025)
- Pages: 476-491
- Section: Articles
- URL: https://kazanmedjournal.ru/0235-0106/article/view/691087
- DOI: https://doi.org/10.31857/S0235010625050069
- ID: 691087
Cite item
Abstract
The microheterogeneity of liquid steel of 12Cr18Ni9Ti grade, as a complex alloy, was understood as a local inhomogeneity in the elemental composition. Anomalous behavior in the temperature dependence of the kinematic viscosity and electrical resistivity of the melt was attributed to the presence of these microheterogeneity. Temperature dependences of the kinematic viscosities and electrical resistivities of 12Cr18Ni9Ti steel samples, in the liquid state, were measured at various stages of the technological cycle. Measurements were conducted in both heating and subsequent cooling modes, over a temperature range of 1400–1730°C. It was observed that the temperature dependencies of the kinematic viscosity obtained in heating and cooling modes coincided over the entire temperature range. However, a difference in the volume per structural unit of viscous flow was noted for all the studied samples. The minimum volume value of the viscous flow structural unit (υ) was obtained for a sample taken after the addition of ferromanganese and titanium. There was a discrepancy in the temperature dependence of the electrical resistivity of the melt, obtained in the heating and cooling mode, which was accompanied by a decrease in the thermal coefficient of electrical resistivity for all samples studied. The largest decrease in the temperature coefficient of electrical resistivity was observed for the sample containing ferromanganese and titanium, indicating a maximum increase in free volume of the melt and, consequently, an increase in the distance between adjacent atoms. It is worth noting that this sample had the highest degree of supercooling during crystallization. The results obtained suggest that the introduction of a new technological step, which involves reloading the furnace and adding titanium after the first discharge, can lead to an improvement in the homogeneity of the molten metal and a potential decrease in the quality of the finished products. Based on these findings, recommendations have been made regarding the preparation of the molten steel for casting and solidification. In order to ensure the highest possible quality of cast products made from 12Cr18Ni9Ti steel, it is recommended to limit the casting process to the first melt, without reloading the furnace or adding titanium.
About the authors
D. P. Shvetsov
Ural Federal University named after the first President of Russia B.N. Yeltsin; LLC «Tsentr Tochnogo Lit’ya»
Email: n.i.sinitsin@urfu.ru
Ekaterinburg, Russia; Ekaterinburg, Russia
V. S. Tsepelev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: n.i.sinitsin@urfu.ru
Ekaterinburg, Russia
N. I. Sinitsin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: n.i.sinitsin@urfu.ru
Ekaterinburg, Russia
O. A. Chikova
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: n.i.sinitsin@urfu.ru
Ekaterinburg, Russia
V. V. Vyukhin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Author for correspondence.
Email: n.i.sinitsin@urfu.ru
Ekaterinburg, Russia
References
- Ul’yanin E.A. Korrozionnostojkie stali i splavy: sprav. izd. M.: Metallurgiya. 1991. 256 s. [In Russian]
- Ramazanov A.K., Ganeev A.A. Osobennosti lit’ya korpusnyh detalej truboprovodnoj armatury iz korrozionnostojkoj stali marki 12H18N9TL // Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2020. V.18. № 2. S. 22–29. https://doi.org/10.18503/1995-2732-2020-18-2-22-29 [In Russian].
- Makarov A.V., Skorynina P.A., Osinceva A.L. i dr. Povyshenie tribologicheskih svojstv austenitnoj stali 12H18N10T nanostrukturiruyushchej frikcionnoj obrabokoj // Obrabotka metallov. 2015. V.69. № 4. S. 80–92. [In Russian]
- Voronenko, B.I. Sovremennye korrozionno-stojkie austenitno-ferritnye stali (Obzor) // MiTOM. 1997. № 10. S. 20–28. [In Russian]
- Cukanov V.V., Cyganko L.K., SHandyba G.A. i dr. Vliyanie legirovaniya i termicheskoj obrabotki na harakteristiki litejnoj korrozionno-stojkoj azotsoderzhashchej stali austenitnogo klassa // Voprosy materialovedeniya. 2015. V.81. № 1. S. 7–11. [In Russian]
- Vasconcellos da Costa e Silva A.L.The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications // Journal of Materials Research and Technology. 2019. V.8. № 2. P. 2408–2422. https://doi.org/10.1016/j.jmrt.2019.01.009
- Fel’dgandler E.G. Vliyanie legirovaniya Si i Cu na korrozionno-elektrohimicheskie i mekhanicheskie svojstva austenitnoj stali // Metallovedenie i termicheskaya obrabotka metallov. 2003. № 10. S. 12–21. [In Russian]
- Proskuryakov V.I., Rodionov I.V., Formirovanie sostava i harakteristik poverhnosti hromonikelevoj stali 12H18N10T pri lazernom modificirovanii v sloe eksperimental’noj legiruyushchej obmazki // ZHTF. 2022. V.92. № 1. S. 84–91. [In Russian]
- Tokovoj O.K., Shaburov D.V. Issledovanie nemetallicheskoj fazy v austenitnoj nerzhaveyushchej stali. Izvestiya vysshih uchebnyh zavedenij. CHernaya Metallurgiya. 2014. V.57. № 12. S. 20–24. https://doi.org/10.17073/0368-0797-2014-12-20-24 [In Russian].
- Polonskij Ya.Ya., Bondareva O.P., Gonik I.L. Fraktograficheskie issledovaniya metalla opytnyh plavok ferrito-austenitnoj stali 08H18G8N2T // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2011. № 5(78). S. 142–144. [In Russian]
- Chikova O.A., Tsepelev V.S., Moskovskikh O.P. Estimating the parameters of the microheterogeneous structure of metal melts according to viscometric experimental data in terms of the absolute reaction rate theory // Russian Journal of Physical Chemistry A. 2017. V.91. №. 6. P. 979–983. https://doi.org/10.1134/S0036024417060061
- Li Q., Zu F., Li X., Xi Y. The electrical resistivity of liquid Pb-Bi alloy // Modern Physics Letters B. 2006. V.20. № 4. P. 151–158. https://doi.org/10.1142/S0217984906009037
- Sinitsin N.I., Chikova O.A., Potapov M.G., Tsepelev V.S., Vyukhin V.V. Study of kinematic viscosity and specific electrical resistance of wear-resistant cast irons ICHKH28N2 and ICH300KH25F4 in liquid state // Rasplavy. 2024. № 6. P. 633–642. https://doi.org/10.31857/S0235010624060051
- Chikova O.A., Sinitsin N.I., Chezganov D.S. Effect of Crystallization Conditions on the Microstructure, Crystal Structure, and Mechanical Properties of a Fe-Mn-C Alloy in Microvolumes // The Physics of Metals and Metallography. 2022. V.123. №. 1. P. 85–91. https://doi.org/10.1134/S0031918X22010021
- SHvidkovskij E.G. Nekotorye voprosy vyazkosti rasplavlennyh metallov. Moskva: Gos. iz-vo. tekhniko-teoreticheskoj lit-ry. 1955. 206 s. [In Russian]
- Arsent’ev P.P., YAkovlev V.V., Krasheninnikov M.G. [i dr.]. Fiziko-himicheskie metody issledovaniya metallurgicheskih processov. Moskva: Metallurgiya. 1988. 511 s. [In Russian]
- Regel’ A.R. Izmerenie elektroprovodnosti metallov vo vrashchayushchem magnitnom pole// ZHFH. 1948. V.18. № 6. S. 1511–1520. [In Russian]
- Voronkov V.V., Ivanova I.I., Turovskij B.M. O primenenii metoda vrashchayushchegosya magnitnogo polya dlya izmereniya elektroprovodnosti rasplavov//Magnitnaya gidrodinamika. 1973. № 2. S. 147–149. [In Russian]
- Ryabina A.B., Kononenko V.I., Razhabov A.A. Bezelektrodnyj metod izmereniya elektrosoprotivleniya metallov v tverdom i zhidkom sostoyaniyah i ustanovka dlya ego realizacii. Rasplavy. 2009. № 1. S. 34–42. [In Russian]
- Tyagunov G.V. [i dr.]. Izmerenie udel’nogo elektricheskogo soprotivleniya metodom vrashchayushchegosya magnitnogo polya// Zavodskaya laboratoriya. 2003. № 2. T.69. S. 36–38. [In Russian]
- Hou, J.X., Zhan C.W., Tian X.L., et al.Structure of Cu-Sn melt at high temperature // Metallurg and Mater. TransactionsA: Phys. Metall. Mater. Sci. 2012. V.43P. 4023–4027.
- Faber T.E. An Introduction to the Theory of Liquid Metals. London: Cambridge University Press. 1972. 602 p.
- Nagel S.R., Tauc J. Nearly-Free-Electron Approach to the Theory of Metallic Glass Alloys. Physical Review Letters. 1975. V.35. № 6. Pp. 380–383.
- Faber T.E.; Ziman J.M. A theory of the electrical properties of liquid metals : III. the resistivity of binary alloys // The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1965. V.11. I. 109. P. 153–173. https://doi.org/10.1080/14786436508211931
- Busch G., Güntherodt H.-J. Electronic Properties of Liquid Metals and Alloys. Solid State Physics. 1974. V.29. P. 235–313. https://doi.org/10.1016/S0081-1947(08)60426-9
Supplementary files
