From rod to cone: functional transformations in the evolution of vertebrate photoreceptors
- Autores: Rotov А.Y.1,2
-
Afiliações:
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS
- L.A. Orbeli Institute of Physiology, NAS RA
- Edição: Volume 39, Nº 2 (2025)
- Páginas: 45-74
- Seção: ОБЗОРЫ
- URL: https://kazanmedjournal.ru/0235-0092/article/view/687720
- DOI: https://doi.org/10.31857/S0235009225020021
- ID: 687720
Citar
Resumo
The vertebrate retina contains two types of photoreceptors: rods and cones, the receptors of nocturnal and diurnal vision, respectively. They have a number of morphological and biochemical differences that determine their functional role. The discovery of intermediate photoreceptor types in a number of vertebrates became the basis for the transmutation theory, which postulates that both rods and cones are capable of changing their functional roles and transforming into their opposite type during adaptation of the visual system to different habitat conditions. Changes in the photoreceptor physiology during functional transition can occur at different levels: morphological (general cell structure), molecular and biochemical (expression of specific protein isoforms of the photosensitive signaling cascade) and electrophysiological (sensitivity and kinetics of the light response). Photoreceptors with a confirmed transitional type are found in basal vertebrates and in groups that have underwent a shift in the habitat conditions towards extremely low or high light levels. In the last two decades, the understanding of the molecular mechanisms leading to the functional transformation from typical rods to cones, and vice versa, has advanced significantly. However, a number of aspects remain poorly understood, primarily because many animals possessing transformed receptors are far from the standard biological model objects. This review discusses the examples of transitional photoreceptors in various taxa, describing the history of their study and current research that sheds light on the molecular features underlying their non-standard physiology.
Palavras-chave
Texto integral

Sobre autores
А. Rotov
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS; L.A. Orbeli Institute of Physiology, NAS RA
Autor responsável pela correspondência
Email: rotovau@gmail.com
Rússia, St. Petersburg; Armenia, Yerevan
Bibliografia
- Vinnikov YA. A., Ehvolyutsiya retseptorov [Evolution of receptors], Leningrad. Nauka, 1979. 140 p. (in Russian)
- Govardovskii V.I. Fotoretseptory i zritel’nye pigmenty setchatki pozvonochnykh: sravnitel’nyi i ehvolyutsionnyi aspect [Photoreceptors and visual pigments of the vertebrate retina: a comparative and evolutionary perspective]. Rukovodstvo po fiziologii. Ehvolyutsionnaya fiziologiya [Handbook on Physiology. Evolutionary Physiology]. Leningrad. Nauka, 1983. V. 2. P. 229-261. (in Russian)
- Govardovskii V.I. Ehlektricheskie i opticheskie svoistva fotoretseptorov pozvonochnykh. Diss. dokt. biol. nauk [Electrical and optical properties of vertebrate photoreceptors. Dr. biol. sci. diss.]. Leningrad. 1978. 424 p. (in Russian)
- Govardovskii V.I., Astakhova L.A., Firsov M.L. Spetsifika fiziologicheskikh i biokhimicheskikh mekhanizmov vozbuzhdeniya i adaptatsii kolbochek setchatki [Specifics of physiological and biochemical mechanisms of excitation and adaptation in retinal cones]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 296-308 (in Russian).
- Govardovskii V.I., Lychakov D.V. Fotoretseptory i zritel’nye pigmenty chernomorskikh plastinozhabernykh [Photoreceptors and visual pigments of Black Sea elasmobranchs]. Zhurnal ehvolyutsionnoi biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 1977. V. 13. P. 162. (in Russian)
- Govardovskii V.I., Chkheidze N.I. Fotoretseptory i zritel’nye pigmenty setchatok nekotorykh zmei [Retinal photoreceptors and visual pigments of the retinas of certain snakes]. Izvestiya Akademii nauk GSSR. Seriya biologicheskaya [Proceedings of the Academy of Sciences of the GSSR. Biological Series]. 1989. V. 15(6). P. 408-414. (in Russian)
- Govardovskii V.I., Chkheidze N.I., Zueva L.V. Morfofunktsional’noe issledovanie setchatki glaza krokodilovogo kaimana Caiman crocodilus [Morphofunctional investigation of the retina in the crocodilian caiman Caiman crocodilus]. Sensornye sistemy [Sensory systems]. 1987. V. 1(1). P. 24-33. (in Russian)
- Golobokova E.Y., Kolesnikov A.V., Govardovskii V.I. Medlennye stadii fotoliza zritel’nogo pigmenta zelenykh palochek lyagushki Rana temporaria [Slow stages of photolysis of the visual pigment of green rods of frog Rana temporaria]. Sensornye sistemy [Sensory systems]. 2003. V. 17(2). P. 134-143. (in Russian)
- Kondrashev S.L., Gnyubkin V.F. Uchastie zelenykh palochek setchatki beskhvostykh amfibii v zritel’nom protsesse [Participation of retinal green rods of anuran amphibians in the visual process]. Mekhanizmy zreniya zhivotnykh [Mechanisms of animal vision]. Moscow. Nauka, 1978. P. 76–84. (in Russian)
- Maurer E.Y., Govardovskii V.I. Regeneratsiya zritel’nykh pigmentov v izolirovannoi setchatke lyagushki Rana temporaria [Regeneration of visual pigments in the isolated retina of the frog Rana temporaria]. Sensornye sistemy [Sensory systems]. 2013. V. 27(2). P. 99-107. (in Russian)
- Orlov O.Y. Ob ehvolyutsii tsvetovogo zreniya u pozvonochnykh [On the evolution of color vision in vertebrates]. Problemy ehvolyutsii [Problems of Evolution]. Novosibirsk. Nauka, 1972. V. 2. P. 69-94. (in Russian)
- Firsov M.L., Govardovskii V.I. Svetovaya adaptatsiya fotoretseptorov: smysl i mekhanizmy [Light adaptation of photoreceptors: meaning and mechanisms]. Sensornye sistemy [Sensory systems]. 2001. V. 15(2). P. 101-113. (in Russian)
- Firsov M.L., Govardovskii V.I. Temnovoi shum zritel’nykh pigmentov s raznymi maksimumami pogloshcheniya [Dark noise of visual pigments with different absorption maxima]. Sensornye sistemy [Sensory systems]. 1990. V. 4. P. 25–33. (in Russian)
- Aguilar M., Stiles W.S. Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta: International Journal of Optics. 1954. V. 1(1). P. 59-65. doi: 10.1080/713818657
- Ali M.A., Anctil M. Retinas of fishes: an atlas. Berlin, Heidelberg. Springer, 2012. 286 p. doi: 10.1007/978-3-642-66435-9
- Anderson S.R., Wiens J.J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution. 2017. V. 71(8). P. 1944-1959. doi: 10.1111/evo.13284
- Arden G. B., Tansley K. The electroretinogram of a diurnal gecko. The Journal of General Physiology. 1962. V. 45(6). P. 1145-1161. doi: 10.1085/jgp.45.6.1145
- Arey L.B. Changes in the rod-visual cells of the frog due to the action of light. Journal of Comparative Neurology. 1916. V. 26. P. 429–441. doi: 10.1002/cne.900260406
- Armengol J.A., Prada F., Genis-Galvez J.M. Oil Droplets in the Chameleon (Chamaleo chamaleo) Retina. Cells Tissues Organs. 1981. V. 110(1). P. 35-39. doi: 10.1159/000145410
- Arshavsky V.Y., Burns M.E. Current understanding of signal amplification in phototransduction. Cellular logistics. 2014. V. 4(2). P. e28680. doi: 10.4161/cl.29390
- Astakhova L.A., Firsov M.L., Govardovskii V.I. Kinetics of turn-offs of frog rod phototransduction cascade. The Journal of general physiology. 2008. V. 132(5). P. 587-604. doi: 10.1085/jgp.200810034
- Astakhova L., Firsov M., Govardovskii V. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Molecular vision. 2015. V. 21. P. 244.
- Astakhova L.A., Novoselov A.D., Ermolaeva M.E., Firsov M.L., Rotov A.Yu. Phototransduction in anuran green rods: origins of extra-sensitivity. International Journal of Molecular Sciences. 2021. V. 22(24) P. 13400. doi: 10.3390/ijms222413400
- Asteriti S., Grillner S., Cangiano L.A. Cambrian origin for vertebrate rods. Elife. 2015. V. 4. P. e07166. doi: 10.7554/eLife.07166
- Bäckström, A.C., Reuter T. Opponent colour interaction between two kinds of rod signals in the frog’s retina. Physica Norvegica. 1974. V. 7. P. 187–189.
- Baden T. Ancestral photoreceptor diversity as the basis of visual behavior. Nature Ecology & Evolution. 2024. V. 8(3). P. 374-386. doi: 10.1038/s41559-023-02291-7
- Baden T., Osorio D. The retinal basis of vertebrate color vision. Annual review of vision science. 2019. V. 5(1). P. 177-200. doi: 10.1146/annurev-vision-091718-014926
- Barlow H.B. Purkinje shift and retinal noise. Nature. 1957. V. 179. P. 255–256. doi: 10.1038/179255b0
- Barlow H.B. The physical limits of visual discrimination. Photophysiology. 1964. V. 2. P. 163-202. doi: 10.1016/B978-1-4832-2739-9.50011-9
- Baylor D.A., Lamb T.D., Yau K.W. Responses of retinal rods to single photons. The Journal of physiology. 1979. V. 288(1). P. 613-634. doi: 10.1113/jphysiol.1979.sp012716
- Baylor D.A., Matthews G., Yau K.W. Two components of electrical dark noise in toad retinal rod outer segments. The Journal of physiology. 1980. V. 309(1). P. 591-621. doi: 10.1113/jphysiol.1980.sp013529
- Bennis M., Molday R.S., Versaux-Botteri C., Repérant J., Jeanny J.C., McDevitt D.S. Rhodopsin-like immunoreactivity in the ‘all cone’retina of the chameleon (Chameleo chameleo). Experimental eye research. 2005. V. 80(5). P. 623-627. doi: 10.1016/j.exer.2004.11.004
- Bhattacharyya N., Darren B., Schott R.K., Tropepe V., Chang B.S. Cone-like rhodopsin expressed in the all-cone retina of the colubrid pine snake as a potential adaptation to diurnality. Journal of Experimental Biology. 2017. V. 220(13). P. 2418-2425. doi: 10.1242/jeb.156430
- Biagioni L. M., Hunt D.M., Collin S.P. Morphological characterization and topographic analysis of multiple photoreceptor types in the retinae of mesopelagic hatchetfishes with tubular eyes. Frontiers in Ecology and Evolution. 2016. V. 4. P. 25. doi: 10.3389/fevo.2016.00025
- Bittencourt G.B., Hauzman E., Bonci D.M.O., Ventura D.F. Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae). Vision Research. 2019. V. 158. P. 72-77. doi: 10.1016/j.visres.2019.02.006
- Boll F. Zur Anatomie und Physiologie der Retina. Archiv für Anatomie und Physiologie. 1877. P. 4-36.
- Bowmaker J.K. Evolution of vertebrate visual pigments. Vision research. 2008. V. 48(20). P. 2022-2041.
- Bozzanao A., Murgia R., Vallerga S., Hirano J., Archer S. The photoreceptor system in the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastomus: possible relationship with depth distribution and predatory lifestyle. Journal of Fish Biology. 2001. V. 59(5). P. 1258-1278. doi: 10.1006/jfbi.2001.1737
- Bradshaw S.N., Allison W.T. Hagfish to illuminate the developmental and evolutionary origins of the vertebrate retina. Frontiers in Cell and Developmental Biology. 2022. V. 10. P. 822358. doi: 10.3389/fcell.2022.822358
- Brazeau M. D., Friedman M. The origin and early phylogenetic history of jawed vertebrates. Nature. 2015. V. 520(7548). P. 490-497. doi: 10.1038/nature14438
- Brin K.P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. The Journal of general physiology. 1977. V. 69(1). P. 97-120. doi: 10.1085/jgp.69.1.97
- Calvert P.D., Govardovskii V.I., Arshavsky V.Y., Makino C.L. Two temporal phases of light adaptation in retinal rods. The Journal of general physiology. 2002. V. 119(2). P. 129-146. doi: 10.1085/jgp.119.2.129
- Carleton K.L., Escobar-Camacho D., Stieb S.M., Cortesi F., Marshall N J. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. Journal of Experimental Biology. 2020. V. 223(8). P. jeb193334. doi: 10.1242/jeb.193334
- Chen M.H., Kuemmel C., Birge R.R., Knox B.E. Rapid release of retinal from a cone visual pigment following photoactivation. Biochemistry. 2012. V. 51(20). P. 4117-4125. doi: 10.1021/bi201522h
- Claes J.M., Partridge J.C., Hart N.S., Garza-Gisholt E., Ho H.C., Mallefet J., Collin S.P. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PloS One. 2014. V. 9(8). P. e104213. doi: 10.1371/journal.pone.0104213
- Cohen A.I. Rods and Cones. Physiology of Photoreceptor Organs. Handbook of Sensory Physiology. Fuortes M.G.F. (eds). Berlin, Heidelberg. Springer, 1972. V. 7/2. P. 63–110. doi: 10.1007/978-3-642-65340-7_3
- Collin S.P., Hart N.S., Shand J., Potter I.C. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Visual neuroscience. 2003. V. 20(2). P. 119-130. doi: 10.1017/S0952523803202030
- Collin S.P., Davies W.L., Hart N.S., Hunt D.M. The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. V. 364( 1531). P. 2925-2940. doi: 10.1098/rstb.2009.0099
- Collin S., V Hoskins R., C Partridge J. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behavior and Evolution. 1998. V. 51(6). P. 291-314. doi: 10.1159/000006544
- Collin S.P., Potter I.C., Braekevelt C.R. The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behavior and Evolution. 1999. V. 54(2). P. 96-118. doi: 10.1159/000006616
- Collin S.P., Trezise A.E. Response to Pisani et al. Current Biology. 2006. V. 16(9). P. R320. doi: 10.1016/j.cub.2006.03.091
- Cornwall M.C., Ripps H., Chappell R.L., Jones G.J. Membrane current responses of skate photoreceptors. The Journal of general physiology. 1989. V. 94(4). P. 633-647. doi: 10.1085/jgp.94.4.633
- Cornwall M. C., Fein A., MacNichol Jr E. F. Cellular mechanisms that underlie bleaching and background adaptation. The Journal of general physiology. 1990. V. 96(2). P. 345-372. doi: 10.1085/jgp.96.2.345
- Cortesi F., Musilova Z., Stieb S.M., Hart N.S., Siebeck U.E., Malmstrøm M., Tørresen O.K., Jentoft S., Cheney K.L., Marshall N.J., Carleton K.L., Salzburger W. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences. 2015. V. 112(5). P. 1493-1498. doi: 10.1073/pnas.1417803112
- Crescitelli F. The gecko visual pigments. The behavior of opsin. The Journal of general physiology. 1979. V. 73(5). P. 541-552. doi: 10.1085/jgp.73.5.541
- Crescitelli F. The two visual pigments of the gecko: The labile behavior. Journal of comparative physiology. 1980. V. 138(2). P. 121-129. doi: 10.1007/BF00680436
- Crescitelli F. The visual cells and visual pigments of the vertebrate eye. Photochemistry of vision. Handbook of sensory physiology. Dartnall H.J.A. (eds). Berlin, Heidelberg. Springer, 1972. V. 7/1. P. 245-353. doi: 10.1007/978-3-642-65066-6_8
- Crescitelli F., Dartnall H.J.A., Loew E.R. The gecko visual pigments: A microspectrophotometric study. The Journal of Physiology. 1977. V. 268(2). P. 559-573. doi: 10.1113/jphysiol.1977.sp011872
- Darden A.G., Wu B.X., Znoiko S.L., Hazard E.S., Kono M., Crouch R.K., Ma J.X. A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. Molecular vision. 2003. V. 9. P. 191-199.
- Dartnall H.J.A. The visual pigment of the green rods. Vision Research. 1967. V. 7(1-2). P. 1-16. doi: 10.1016/0042-6989(67)90022-3
- Davies W.L., Collin S.P., Hunt D.M. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Molecular biology and evolution. 2009. V. 26(8). P. 1803-1809. doi: 10.1093/molbev/msp089
- Davies W.I.L., Collin S.P., Hunt D.M. Molecular ecology and adaptation of visual photopigments in craniates. Molecular ecology. 2012. V. 21(13). P. 3121-3158. doi: 10.1111/j.1365-294X.2012.05617.x
- Davies, W.L., Cowing, J.A., Bowmaker, J.K., Carvalho, L.S., Gower, D.J., Hunt, D.M. Shedding light on serpent sight: the visual pigments of henophidian snakes. Journal of Neuroscience. 2009. V. 29(23). P. 7519-7525. doi: 10.1523/JNEUROSCI.0517-09.2009
- de Busserolles F., Cortesi F., Helvik J.V. Davies W.I.L., Templin R.M., Sullivan R.K.P., Michell C.T., Mountford J.K., Collin S.P., Irigoien X., Kaartvedt S., Marshall J. Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Science advances. 2017. V. 3(11). P. eaao4709. doi: 10.1126/sciadv.aao4709
- de Busserolles F., Fogg L., Cortesi F., Marshall J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Seminars in cell & developmental biology. 2020. V. 106. P. 20-30. doi: 10.1016/j.semcdb.2020.05.027
- Denton E.J. Light and vision at depths greater than 200 metres. Light and life in the sea. Herring P.J., Campbell A.K., Whitfield M., Maddock L. (eds). Cambridge. Cambridge University Press. 1990. P. 127-148.
- Denton E.J.; Wyllie J.H. Study of the photosensitive pigments in the pink and green rods of the frog. Journal of Physiology. 1955. V. 127. P. 81-89. doi: 10.1113/jphysiol.1955.sp005239
- Detwiler S. R., Laurens H. Studies on the retina. The structure of the retina of Phrynosoma cornutum. Journal of Comparative Neurology. 1920. V. 32(3). P. 347-356. doi: 10.1002/cne.900320305
- Dickson D.H., Graves D.A. Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.). Experimental Eye Research. 1979. V. 29(1). P. 45-60. doi: 10.1016/0014-4835(79)90165-9
- Dodt E. Purkinje-shift in the rod eye of the bush-baby, Galago crassicaudatus. Vision Research. 1967. V. 7(7-8). P. 509-517. doi: 10.1016/0042-6989(67)90060-0
- Donner K., Firsov M.L., Govardovskii V.I. The frequency of isomerization‐like ‘dark’ events in rhodopsin and porphyropsin rods of the bull‐frog retina. The Journal of physiology. 1990. V. 428(1). P. 673-692. doi: 10.1113/jphysiol.1990.sp018234
- Donner K.O., Reuter T. The spectral sensitivity and photopigment of the green rods in the frog’s retina. Vision Research. 1962. V. 2. P. 357-372. doi: 10.1016/0042-6989(62)90003-2
- Donner K., Yovanovich C.A.M. A frog’s eye view: Foundational revelations and future promises. Seminars in Cell & Developmental Biology. 2020. V. 106. P. 72-85. doi: 10.1016/j.semcdb.2020.05.011
- Dowling J.E., Ripps H. Adaptation in skate photoreceptors. The Journal of general physiology. 1972. V. 60(6). P. 698-719. doi: 10.1085/jgp.60.6.698
- Dowling J.E., Ripps H. On the duplex nature of the skate retina. Journal of Experimental Zoology. 1991. V. 256(S5). P. 55-65. doi: 10.1002/jez.1402560509
- Dowling J.E., Ripps H. S-potentials in the skate retina: intracellular recordings during light and dark adaptation. The Journal of General Physiology. 1971. V. 58(2). P. 163-189. doi: 10.1085/jgp.58.2.163
- Dowling J.E., Ripps H. Visual adaptation in the retina of the skate. The Journal of General Physiology. 1970. V. 56(4). P. 491-520. doi: 10.1085/jgp.56.4.491
- Dunn R.F. Studies on the retina of the gecko Coleonyx variegatus: I. The visual cell classification. Journal of ultrastructure research. 1966. V. 16(5-6). P. 651-671. doi: 10.1016/S0022-5320(66)80012-6
- Ebrey T., Koutalos Y. Vertebrate photoreceptors. Progress in retinal and eye research. 2001. V. 20(1). P. 49-94. doi: 10.1016/S1350-9462(00)00014-8
- Ellingson J.M., Fleishman L.J., Loew E.R. Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A. 1995. V. 177. P. 559-567. doi: 10.1007/BF00207185
- Emerling C.A. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Molecular Phylogenetics and Evolution. 2017a. V. 115. P. 40-49. doi: 10.1016/j.ympev.2017.07.014
- Emerling C.A. Archelosaurian color vision, parietal eye loss, and the crocodylian nocturnal bottleneck. Molecular biology and evolution. 2017b. V. 34(3). P. 666-676. doi: 10.1093/molbev/msw265
- Emerling C.A., Springer M.S. Eyes underground: regression of visual protein networks in subterranean mammals. Molecular Phylogenetics and Evolution. 2014. V. 78. P. 260-270. doi: 10.1016/j.ympev.2014.05.016
- Emerling C.A., Springer M.S. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2015. V. 282(1800). P. 20142192. doi: 10.1098/rspb.2014.2192
- Fain G.L. Lamprey vision: photoreceptors and organization of the retina. Seminars in cell & developmental biology. 2020. V. 106. P. 5-11. doi: 10.1016/j.semcdb.2019.10.008
- Fain G.L., Dowling J.E. Intracellular recordings from single rods and cones in the mudpuppy retina. Science. 1973. V. 180(4091). P. 1178-1181. doi: 10.1126/science.180.4091.1178
- Fernandez H.R.C. Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Research. 1979. V. 19(5). P. 589-592. doi: 10.1016/0042-6989(79)90144-5
- Fernholm B., Holmberg K. The eyes in three genera of hagfish (Eptatretus, Paramyxine and Myxine) – A case of degenerative evolution. Vision Research. 1975. V. 15(2). P. 253-IN4. doi: 10.1016/0042-6989(75)90215-1
- Francke M., Kreysing M., Mack A., Engelmann J., Karl A., Makarov F., Guck J., Kolle M., Wolburg H., Pusch R., von der Emde G., Schuster S., Wagner H.J., Reichenbach A. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in retinal and eye research. 2014. V. 38. P. 43-69. doi: 10.1016/j.preteyeres.2013.10.001
- Franz V. Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere. 1931. V. 49. P. 323-462.
- Fröhlich E., Wagner H.J. Development of multibank rod retinae in deep-sea fishes. Visual neuroscience. 1998. V. 15(3). P. 477-483. doi: 10.1017/s095252389815304x
- Gamble T., Greenbaum E., Jackman T.R., Bauer A.M. Into the light: diurnality has evolved multiple times in geckos. Biological Journal of the Linnean Society. 2015. V. 115(4). P. 896-910. doi: 10.1111/bij.12536
- Goldsmith T. H., Collins J. S., Licht S. The cone oil droplets of avian retinas. Vision research. 1984. V. 24(11). P. 1661-1671. doi: 10.1016/0042-6989(84)90324-9
- Golobokova E.Y., Govardovskii V.I. Late stages of visual pigment photolysis in situ: cones vs. rods. Vision research. 2006. V. 46(14). P. 2287-2297. doi: 10.1016/j.visres.2005.12.017
- Govardovskii V.I., Lychakov D.V. Visual cells and visual pigments of the lamprey, Lampetra fluviatilis. Journal of Comparative Physiology A. 1984. V. 154(2). P. 279-286. doi: 10.1007/BF00604994
- Govardovskii V.I., Zueva L.V., Lychakov D.V. Microspectrophotometric study of visual pigments in five species of geckos. Vision research. 1984. V. 24(10). P. 1421-1423. doi: 10.1016/0042-6989(84)90198-6
- Govardovskii V.I., Rotov A.Y., Astakhova L.A., Nikolaeva D.A., Firsov M.L. Visual cells and visual pigments of the river lamprey revisited. Journal of Comparative Physiology A. 2020. V. 206(1). P. 71-84. doi: 10.1007/s00359-019-01395-5
- Govardovskii V. I., Reuter T. Why do green rods of frog and toad retinas look green? Journal of Comparative Physiology B. 2014. V. 200. P. 823-835. doi: 10.1007/s00359-014-0925-z
- Gower D.J., Fleming J.F., Pisani D., Vonk F.J., Kerkkamp H.M., Peichl L., Meimann S, Casewell N.R., Henkel C.V., Richardson M.K., Sanders K.L., Simões B.F. Eye-transcriptome and genome-wide sequencing for Scolecophidia: implications for inferring the visual system of the ancestral snake. Genome biology and evolution. 2021. V. 13(12). P. evab253. doi: 10.1093/gbe/evab253
- Gower D.J., Hauzman E., Simões B.F., Schott R.K. Eyes, vision, and the origins and early evolution of snakes. The Origin and Early Evolutionary History of Snakes. Gower D.J., Zaher H. (eds). Cambridge. Cambridge University Press, 2022. V. 90. P. 316. doi: 10.1017/9781108938891.020
- Gower D.J., Sampaio F. L., Peichl L., Wagner H.J., Loew E.R., Mclamb W., Douglas R.H., Orlov N., Grace M.S., Hart N.S., Hunt D.M., Partridge J.C., Simões B.F. Evolution of the eyes of vipers with and without infrared-sensing pit organs. Biological Journal of the Linnean Society. 2019. V. 126(4). P. 796-823. doi: 10.1093/biolinnean/blz003
- Gruber S.H. Duplex vision in the elasmobranchs: histological, electrophysiological and psychophysical evidence. Vision in fishes: new approaches in research. Ali M.A. (eds). Boston, MA. Springer, 1975. P. 525-540.
- Hahn J., Monavarfeshani A., Qiao M., Kao A.H., Kölsch Y., Kumar A., Kunze V.P., Rasys A.M., Richardson R., Wekselblatt J.B., Baier H., Lucas R.J., Li W., Meister M., Trachtenberg J.T., Yan W., Peng Y.R., Sanes J.R., Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. Nature. 2023. V. 624(7991). P. 415-424. doi: 10.1038/s41586-023-06638-9
- Hamasaki D.I. An anatomical and electrophysiological study of the retina of the owl monkey, Aotes trivirgatus. Journal of Comparative Neurology. 1967. V. 130(2). P. 163-173. doi: 10.1002/cne.901300205
- Hart N.S., Lamb T.D., Patel H.R., Chuah A., Natoli R.C., Hudson N.J., Cutmore S.C., Davies W.I..L., Collin S.P., Hunt D.M. Visual opsin diversity in sharks and rays. Molecular Biology and Evolution. 2020. V. 37(3). P. 811-827. doi: 10.1093/molbev/msz269
- Hart N S., Coimbra J.P., Collin S.P., Westhoff G. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology. 2012. V. 520(6). P. 1246-1261. doi: 10.1002/cne.22784
- Hauser F.E., Chang B.S.W. Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current opinion in genetics & development. 2017. V. 47. P. 110-120. doi: 10.1016/j.gde.2017.09.005
- Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Seminars in Cell & Developmental Biology. 2020. V. 106. P. 86-93. doi: 10.1016/j.semcdb.2020.04.004
- Hauzman E., Bonci D.M. O., Suárez-Villota E.Y., Neitz M., Ventura D.F. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. BMC Evolutionary Biology. 2017. V. 17. P. 1-14. doi: 10.1186/s12862-017-1110-0
- Hauzman E., Bonci D.M., Grotzner S.R., Mela M. Liber A.M., Martins S.L., Ventura D.F. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes. Brain Behavior and Evolution. 2014. V. 84(3). P. 197-213. doi: 10.1159/000365275
- Hecht S. Rods, cones, and the chemical basis of vision. Physiological Reviews. 1937. V. 17(2). P. 239-290. doi: 10.1152/physrev.1937.17.2.239
- Hecht S., Shlaer S., Pirenne M.H. Energy, quanta, and vision. Journal of General Physiology. 1942. V. 25(6). P. 819-840. doi: 10.1085/jgp.25.6.819
- Hibbard E., Lavergne J. Morphology of the retina of the sea-snake, Pelamis platurus. Journal of anatomy. 1972. V. 112(Pt 1). P. 125.
- Hisatomi O., Ishikawa M., Tonosaki A., Tokunaga F. Characterization of lamprey rhodopsin by isolation from lamprey retina and expression in mammalian cells. Photochemistry and Photobiology. 1997. V. 66. P. 792–5. doi: 10.1111/j.1751-1097.1997.tb03226.x
- Hisatomi O., Takahashi Y., Taniguchi Y., Tsukahara Y., Tokunaga F. Primary structure of a visual pigment in bullfrog green rods. FEBS Letters. 1999. V. 447. P. 44–48. doi: 10.1016/S0014-5793(99)00209-4
- Hisatomi O., Kayada S., Taniguchi Y., Kobayashi Y., Satoh T., Tokunaga F. Primary structure and characterization of a bullfrog visual pigment contained in small single cones. Comparative Biochemistry and Physiology Part B. 1998. V. 119(3). P. 585-591. doi: 10.1016/S0305-0491(98)00032-7
- Hisatomi O., Tokunaga F. Molecular evolution of proteins involved in vertebrate phototransduction. Comparative Biochemistry and Physiology Part B. 2002. V. 133(4). P. 509-522. doi: 10.1016/S1096-4959(02)00127-6
- Hofmann K.P., Lamb T.D. Rhodopsin, light-sensor of vision. Progress in Retinal and Eye Research. 2023. V. 93. P. 101116. doi: 10.1016/j.preteyeres.2022.101116
- Imai H., Imamoto Y., Yoshizawa T., Shichida Y. Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry. 1995. V. 34. P. 10525-10531. doi: 10.1021/bi00033a026
- Imai H., Kuwayama S., Onishi A., Morizumi T., Chisaka O., Shichida Y. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ. Photochemical & Photobiological Sciences. 2005. V. 4. P. 667–674. doi: 10.1039/b416731g
- Ingram N.T., Sampath A.P., Fain G.L. Why are rods more sensitive than cones? The Journal of physiology. 2016. V. 594(9). P. 5415-5426. doi: 10.1113/JP272556
- Ishikawa M., Takao M., Washioka H., Tokunaga F., Watanabe H., Tonosaki A. Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence. Cell and tissue research. 1987. V. 249. P. 241-246. doi: 10.1007/bf00215506
- Jacobs G.H. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Visual Neuroscience. 2013. V. 30(1-2). P. 39-53. doi: 10.1017/S0952523812000429
- Jacobs G.H., Fisher S.K., Anderson D.H., Silverman M.S. Scotopic and photopic vision in the California ground squirrel: physiological and anatomical evidence. Journal of Comparative Neurology. 1976. V. 165(2). P. 209-227. doi: 10.1002/cne.901650207
- Jacobs G.H., Fenwick J.A., Crognale M.A., Deegan J.F. The all-cone retina of the garter snake: spectral mechanisms and photopigment. Journal of Comparative Physiology A. 1992. V. 170. P. 701-707. doi: 10.1007/bf00198980
- Jamieson G.S., Fisher H.D. The retina of the harbour seal, Phoca vitulina. Canadian Journal of Zoology. 1971. V. 49(1). P. 19-23. doi: 10.1139/z71-005
- Karnik S.S., Sakmar T.P., Chen H.B., Khorana H.G. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of the National Academy of Sciences. 1988. V. 85(22). P. 8459-8463. doi: 10.1073/pnas.85.22.8459
- Katti C., Stacey-Solis M., Coronel-Rojas N.A., Davies W.I.L. The diversity and adaptive evolution of visual photopigments in reptiles. Frontiers in Ecology and Evolution. 2019. V. 7. P. 352. doi: 10.3389/fevo.2019.00352
- Kawamura S., Tachibanaki S. Molecular bases of rod and cone differences. Progress in retinal and eye research. 2022. V. 90. P. 101040. doi: 10.1016/j.preteyeres.2021.101040
- Kawamura S., Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision research. 1998. V. 38(1). P. 37-44. doi: 10.1016/S0042-6989(97)00160-0
- Kefalov V., Fu Y., Marsh-Armstrong N., Yau K.W. Role of visual pigment properties in rod and cone phototransduction. Nature. 2003. V. 425(6957). P. 526-531. doi: 10.1038/nature01992
- Kefalov V.J. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. Journal of Biological Chemistry. 2012. V. 287(3). P. 1635-1641. doi: 10.1074/jbc.R111.303008
- Kelber A., Roth L.S.V. Nocturnal colour vision–not as rare as we might think. Journal of Experimental Biology. 2006. V. 209(5). P. 781-788. doi: 10.1242/jeb.02060
- Kelber A., Yovanovich C., Olsson P. Thresholds and noise limitations of colour vision in dim light. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017. V. 372(1717). P. 20160065. doi: 10.1098/rstb.2016.0065
- Kiser P.D., Golczak M., Palczewski K. Chemistry of the retinoid (visual) cycle. Chemical reviews. 2014. V. 114(1). P. 194-232. doi: 10.1021/cr400107q
- Kleinschmidt J., Dowling J.E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. The Journal of general physiology. 1975. V. 66(5). P. 617-648. doi: 10.1085/jgp.66.5.617
- Koch K.W., Dell’Orco D. A calcium-relay mechanism in vertebrate phototransduction. ACS chemical neuroscience. 2013. V. 4(6). P. 909-917. doi: 10.1021/cn400027z
- Kojima D., Okano T., Fukada Y., Shichida Y., Yoshizawa T., Ebrey T.G. Cone visual pigments are present in gecko rod cells. Proceedings of the National Academy of Sciences. 1992. V. 89(15). P. 6841-6845. doi: 10.1073/pnas.89.15.6841
- Kojima K., Matsutani Y., Yamashita T., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Hisatomi O., Nishikawa K., Sakurai K., Shichida Y. Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Proceedings of the National Academy of Sciences. 2017. V. 114. P. 5437-5442. doi: 10.1073/pnas.1620010114
- Kojima K., Matsutani Y., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Shichida Y., Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. Science Advances. 2021. V. 7(40). P. eabj1316. doi: 10.1126/sciadv.abj1316
- Kojima K., Yanagawa M., Imamoto Y., Yamano Y., Wada A., Shichida Y., Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. Journal of Biological Chemistry. 2024. V. 300(4). doi: 10.1016/j.jbc.2024.107175
- Kolesnikov A.V., Ala-Laurila P., Shukolyukov S.A., Crouch R.K., Wiggert B., Estevez M.E., Govardovskii V.I., Cornwall M.C. Visual cycle and its metabolic support in gecko photoreceptors. Vision research. 2007. V. 47(3). P. 363-374. doi: 10.1016/j.visres.2006.08.024
- Kondrashev S.L. Trichromatic vision in toads: evidence from preference for colour objects during mate choice. Behaviour. 2023. V. 160(8-9). P. 753-784. doi: 10.1163/1568539X-bja10233
- Korenyak D.A., Govardovskii V.I. Photoreceptors and visual pigments in three species of newts. Journal of Evolutionary Biochemistry and Physiology. 2013. V. 49. P. 399-407. doi: 10.1134/S0022093013040038
- Koskelainen A., Hemilä S., Donner K. Spectral sensitivities of short‐and long‐wavelength sensitive cone mechanisms in the frog retina. Acta Physiologica Scandinavica. 1994. V. 152(1). P. 115-124. doi: 10.1111/j.1748-1716.1994.tb09790.x
- Lagman D., Franzen I.E., Eggert J., Larhammar D., Abalo X.M. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evolutionary Biology. 2016. V. 16. P. 124. doi: 10.1186/s12862-016-0695-z
- Lamb T.D. Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in retinal and eye research. 2013. V. 36. P. 52-119. doi: 10.1016/j.preteyeres.2013.06.001
- Lamb T.D. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Progress in retinal and eye research. 2020. V. 76. P. 100823. 10.1016/j.preteyeres.2019.100823
- Lamb T.D., Pugh E.N. Jr. Phototransduction, dark adaptation, and rhodopsin regeneration. The Proctor Lecture. Investigative ophthalmology & visual science. 2006. V. 47. P. 5138–5152. doi: 10.1167/iovs.06-0849
- Locket N.A. Adaptations to the deep-sea environment. The visual system in vertebrates. Handbook of Sensory Physiology. Crescitelli F. (eds). Berlin, Heidelberg. Springer, 1977. V. 7/5. P. 67-192. doi: 10.1007/978-3-642-66468-7_3
- Locket N.A. The multiple bank rod fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1985. V. 224(1234). P. 7-22. doi: 10.1098/rspb.1985.0018
- Loew E.R. A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko). Vision research. 1994. V. 34(11). P. 1427-1431. doi: 10.1016/0042-6989(94)90143-0
- Loew E.R., Govardovskii V.I., Röhlich P., Szél Á. Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Visual Neuroscience. 1996. V. 13(2). P. 247-256. doi: 10.1017/S0952523800007483
- Luo D.G.; Yue W.W.; Ala-Laurila P.; Yau K.W. Activation of visual pigments by light and heat. Science. 2011. V. 332. P. 1307-1312. doi: 10.1126/science.1200172
- Lupše N., Cortesi F., Freese M., Marohn L., Pohlmann J.D., Wysujack K., Hanel R., Musilova Z. Visual gene expression reveals a cone-to-rod developmental progression in deep-sea fishes. Molecular Biology and Evolution. 2021. V. 38(12). P. 5664-5677. doi: 10.1093/molbev/msab281
- Ma J., Znoiko S., Othersen K.L., Ryan J.C., Das J., Isayama T., Kono,M., Oprian D.D., Corson W.D., Cornwall M.C., Cameron D.A., Harosi F.I., Makino C.L., Crouch R.K. A visual pigment expressed in both rod and cone photoreceptors. Neuron. 2001. V. 32. P. 451-461. doi: 10.1016/S0896-6273(01)00482-2
- Macedonia J.M., Lappin A.K., Loew E.R., Mcguire J.A., Hamilton P.S., Plasman M., Brandt Y., Lemos-Espinal J.A., Kemp D.J. Conspicuousness of Dickerson’s collared lizard (Crotaphytus dickersonae) through the eyes of conspecifics and predators. Biological Journal of the Linnean Society. 2009. V. 97(4). P. 749-765. doi: 10.1111/j.1095-8312.2009.01217.x
- Magaña-Hernández L., Wagh A.S., Fathi J.G., Robles J.E., Rubio B., Yusuf Y., Rose E.E., Brown D.E., Perry P.E., Hamada E., Anastassov I. A. Ultrastructural characteristics and synaptic connectivity of photoreceptors in the simplex retina of Little skate (Leucoraja erinacea). Eneuro. 2023. V. 10(10). P. eneuro.0226-23.2023. doi: 10.1523/eneuro.0226-23.2023
- Mariani A.P. Photoreceptors of the larval tiger salamander retina. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1986. V. 227(1249). P. 483-492. doi: 10.1098/rspb.1986.0035
- Matthews G. Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina. The Journal of Physiology. 1984. V. 349(1). P. 607-618. doi: 10.1113/jphysiol.1984.sp015176
- Matthews G. Physiological characteristics of single green rod photoreceptors from toad retina. The Journal of Physiology. 1983. V. 342(1). P. 347-359. doi: 10.1113/jphysiol.1983.sp014855
- Maximov V.V., Orlov O.Y., Reuter T. Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Research. 1985. V. 25. P. 1037–1049. doi: 10.1016/0042-6989(85)90092-6
- McDevitt D.S., Brahma S.K., Jeanny J.C., Hicks D. Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon. The Anatomical Record. 1993. V. 237(3). P. 299-307. doi: 10.1002/ar.1092370302
- McGowen M.R., Tsagkogeorga G., Williamson J., Morin P.A., Rossiter A.S.J. Positive selection and inactivation in the vision and hearing genes of cetaceans. Molecular Biology and Evolution. 2020. V. 37. №. 7. P. 2069-2083. doi: 10.1093/molbev/msaa070.
- McKibbin C., Toye A.M., Reeves P.J., Khorana H.G., Edwards P.C., Villa C., Booth P.J. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain. Journal of molecular biology. 2007. V. 374(5). P. 1309-1318. doi: 10.1016/j.jmb.2007.10.013
- Meneghini K.A., Hamasaki D.I. The electroretinogram of the iguana and Tokay gecko. Vision Research. 1967. V. 7(3-4). P. 243-IN11. doi: 10.1016/0042-6989(67)90088-0
- Meredith R.W., Gatesy J., Emerling C.A., York V.M., Springer M.S. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genetics. 2013. V. 9(4). P. e1003432. doi: 10.1371/journal.pgen.1003432
- Mohun S.M., Davies W.I.L. The evolution of amphibian photoreception. Frontiers in Ecology and Evolution. 2019. V. 7. P. 321. doi: 10.3389/fevo.2019.00321
- Morshedian A., Fain G.L. Single-photon sensitivity of lamprey rods with cone-like outer segments. Current Biology. 2015. V. 25(4). P. 484-487. doi: 10.1016/j.cub.2014.12.031
- Morshedian A., Fain G.L. Light adaptation and the evolution of vertebrate photoreceptors. The Journal of physiology. 2017. V. 595(14). P. 4947-4960. doi: 10.1113/JP274211
- Müller B., Goodman S. M., Peichl L. Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain Behavior and Evolution. 2007. V. 70(2). P. 90-104. doi: 10.1159/000102971
- Müller H. Anatomisch-physiologische Untersuchungen über die Retina des Menschen und der Wirbelthiere. Leipzig. Verlag von Wilhelm Engelmann, 1856. 122 p.
- Munk O. Ocular anatomy of some deep-sea teleosts. Copenhagen. Andr. Fred. Høst & Søn, 1966. 63 p. doi: 10.1163/9789004628663
- Munk O., Rasmussen J.B. Note on the rod‐like photoreceptors in the retina of the snake Telescopus fallax (Fleischmann, 1831). Acta Zoologica. 1993. V. 74(1). P. 9-13. doi: 10.1111/j.1463-6395.1993.tb01216.x
- Munz F.W. Photosensitive pigments from the retinae of certain deep-sea fishes. The Journal of physiology. 1958. V. 140(2). P. 220. doi: 10.1113/jphysiol.1958.sp005929
- Muradov H., Kerov V., Boyd K.K., Artemyev N.O. Unique transducins expressed in long and short photoreceptors of lamprey Petromyzon marinus. Vision Research. 2008. V. 48(21). P. 2302-2308. doi: 10.1016/j.visres.2008.07.006
- Muradov H., Boyd K.K., Kerov V., Artemyev N.O. PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates. Biochemistry. 2007. V. 46(35). P. 9992–10000. doi: 10.1021/bi700535s
- Musilova Z., Cortesi F., Matschiner M., Davies W. I., Patel J. S., Stieb S.M., de Busserolles F., Malmstrøm M., Tørresen O.K., Brown C.J., Mountford J.K., Hanel R., Stenkamp D.L., Jakobsen K.S., Carleton K.L., Jentoft S., Marshall N.J., Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science. 2019. V. 364(6440). P. 588-592. doi: 10.1126/science.aav4632
- Musilova Z., Salzburger W., Cortesi F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annual review of cell and developmental biology. 2021. V. 37. P. 441-468. doi: 10.1146/annurev-cellbio-120219-024915
- Mustafi D., Engel A. H., Palczewski K. Structure of cone photoreceptors. Progress in retinal and eye research. 2009. V. 28(4). P. 289-302. doi: 10.1016/j.preteyeres.2009.05.003
- Nagloo N., Collin S.P., Hemmi J.M., Hart N.S. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni. Journal of Experimental Biology. 2016. V. 219(9). P. 1394-1404. doi: 10.1242/jeb.135673
- New S.T., Hemmi J.M., Kerr G.D., Bull C.M. Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2012. V. 295(10). P. 1727-1735. doi: 10.1002/ar.22546
- Nickle B., Robinson P.R. The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies. Cellular and Molecular Life Sciences. 2007. V. 64. P. 2917-2932. doi: 10.1007/s00018-007-7253-1
- Nikonov S., Lamb T.D., Pugh Jr E.N. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. The Journal of general physiology. 2000. V. 116(6). P. 795-824. doi: 10.1085/jgp.116.6.795
- Nilsson S.E.G. An electron microscopic classification of the retinal receptors of the leopard frog (Rana pipiens). Journal of Ultrastructure Research. 1964. V. 10. P. 390–416. doi: 10.1016/S0022-5320(64)80018-6
- O’Brien J., Ripps H., Al-Ubaidi M.R. Molecular cloning of a rod opsin cDNA from the skate retina. Gene. 1997. V. 193(2). P. 141-150. doi: 10.1016/S0378-1119(97)00079-6
- O’Day K. Visual cells of the guinea pig. Nature. 1947. V. 160(4071). P. 648-648. doi: 10.1038/160648a0
- O’Day W.T., Young R.W. Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish. The Journal of cell biology. 1978. V. 76(3). P. 593-604. doi: 10.1083/jcb.76.3.593
- Öhman P. The Photoreceptor Outer Segments of the River Lamprey (Lampreta fluviatilis). An Electron‐, Fluorescence‐and Light Microscopic Study. Acta Zoologica. 1971. V. 52(2). P. 287-297. doi: 10.1111/j.1463-6395.1971.tb00564.x
- Öhman P. Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision research. 1976. V. 16(6). P. 659-IN6. doi: 10.1016/0042-6989(76)90014-6
- Pedler C. Rods and cones – a new approach. International review of general and experimental zoology. 1969. V. 4. P. 219-274. doi: 10.1016/B978-0-12-368104-1.50010-9
- Pedler C., Tansley K. The fine structure of the cone of a diurnal gecko (Phelsuma inunguis). Experimental eye research. 1963. V. 2(1). P. 39-IN21. doi: 10.1016/S0014-4835(63)80023-8
- Pedler C., Tilly R. The nature of the gecko visual cell: A light and electron microscopic study. Vision research. 1964. V. 4(9-10). P. 499-IN18. doi: 10.1016/0042-6989(64)90056-2
- Pepperberg D.R., Cornwall M.C., Kahlert M., Hofmann K.P., Jin J., Jones G.J., Ripps H. Light-dependent delay in the falling phase of the retinal rod photoresponse. Visual neuroscience. 1992. V. 8(1). P. 9-18. doi: 10.1017/S0952523800006441
- Pinto B.J., Nielsen S.V., Gamble T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Molecular Phylogenetics and Evolution. 2019. V. 141. P. 106639. doi: 10.1016/j.ympev.2019.106639
- Pisani D., Mohun S.M., Harris S.R., MacInerney J.O., Wilkinson M. Molecular evidence for dim-light vision in the last common ancestor of the vertebrates. Current Biology. 2006. V. 16(9). P. R318-R319. doi: 10.1016/j.cub.2006.03.090
- Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary biology. 2013. V. 13. P. 1-54. doi: 10.1186/1471-2148-13-93
- Reuter T. The synthesis of photosensitive pigments in the rods of the frog’s retina. Vision research. 1966. V. 6(1-2). P. 15-38. doi: 10.1016/0042-6989(66)90011-3
- Rieke F., Baylor D.A. Origin and functional impact of dark noise in retinal cones. Neuron. 2000. V. 26. P. 181–186. doi: 10.1016/S0896-6273(00)81148-4
- Ripps H., Dowling J.E. Structural features and adaptive properties of photoreceptors in the skate retina. Journal of Experimental Zoology. 1991. V. 256(S5). P. 46-54. doi: 10.1002/jez.1402560508
- Rispoli G., Sather W.A., Detwiler P.B. Visual transduction in dialysed detached rod outer segments from lizard retina. The Journal of physiology. 1993. V. 465(1). P. 513-537. doi: 10.1113/jphysiol.1993.sp019691
- Röll B. Characterization of retinal oil droplets in diurnal geckos (Reptilia, Gekkonidae). Journal of Experimental Zoology. 2000a. V. 287(7). P. 467-476. doi: 10.1002/1097-010X(20001201)287:7<467::AID-JEZ2>3.0.CO;2-8
- Röll B. Gecko vision – visual cells, evolution, and ecological constraints. Journal of neurocytology. 2000b. V. 29(7). P. 471-484. doi: 10.1023/A:1007293511912
- Röll B., Horn H.G. The structure of the eye of the monitor lizard Varanus griseus caspius (Reptilia, Varanidae). Advances in Monitor Research II. Mertensiella. Horn H.G., Böhme W. (eds). Rheinbach. Deutsche Gesellschaft für Herpetologie und Terrarienkundeņ, 1999. V. 11. P. 291-306.
- Roth L.S.V., Kelber A. Nocturnal colour vision in geckos. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004. V. 271(suppl. 6). P. S485-S487. doi: 10.1098/rsbl.2004.0227
- Sakurai K. Physiological characteristics of photoreceptors in the lamprey, Lethenteron japonicum. 2017. Zoological Science. V. 34(4). P. 326-330. doi: 10.2108/zs170044
- Schluessel V., Rick I.P., Seifert F.D., Baumann C., Davies W.I.L. Not just shades of grey: life is full of colour for the ocellate river stingray (Potamotrygon motoro). Journal of Experimental Biology. 2021. V. 224(9). P. jeb226142. doi: 10.1242/jeb.226142
- Schott R.K., Fujita M.K., Streicher J.W., Gower D.J., Thomas K.N., Loew E.R., Bamba Kaya A.G., Bittencourt-Silva G.B., Becker C.G., Cisneros-Heredia D., Clulow S., Davila M., Firneno T.J., Haddad C.F.B., Janssenswillen S., Labisko J., Maddock S.T., Mahony M., Martins R.A., Michaels C.J., Mitchell N.J., Portik D.M., Prates I., Roelants K., Roelke C., Tobi E., Woolfolk M., Bell R.C. Diversity and evolution of frog visual opsins: spectral tuning and adaptation to distinct light environments. Molecular biology and evolution. 2024. V. 41(4). P. msae049. doi: 10.1093/molbev/msae049
- Schott R.K., Bhattacharyya N., Chang B.S.W. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution. 2019. V. 73(9). P. 1958-1971. doi: 10.1111/evo.13810
- Schott R.K., Müller J., Yang C.G.Y., Bhattacharyya N., Chan N., Xu M., Morrow J.M., Ghenu A.H., Loew E.R., Tropepe V., Chang B.S.W. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proceedings of the National Academy of Sciences. 2016. V. 113(2). P. 356-361. doi: 10.1073/pnas.1513284113
- Schott R.K., Panesar B., Card D.C., Preston M., Castoe T.A., Chang B.S. Targeted capture of complete coding regions across divergent species. Genome Biology and Evolution. 2017. V. 9(2). P. 398-414. doi: 10.1093/gbe/evx005
- Schott R.K., Van Nynatten A., Card D.C., Castoe T.A., Chang B.S. Shifts in selective pressures on snake phototransduction genes associated with photoreceptor transmutation and dim-light ancestry. Molecular Biology and Evolution. 2018. V. 35(6). P. 1376-1389. doi: 10.1093/molbev/msy025
- Schultze M. Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie. 1866. V. 2(1). P. 175-286. doi: 10.1007/bf02962033
- Schultze M. Über Stäbchen und Zapfen der Retina. Archiv für mikroskopische Anatomie. 1867. V. 3(1). P. 215-247. doi: 10.1007/bf02960456
- Schweikert L.E., Fasick J.I., Grace M.S. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. Journal of Comparative Neurology. 2016. V. 524(14). P. 2873-2885. doi: 10.1002/cne.23996
- Shichida Y., Matsuyama T. Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. V. 364(1531). P. 2881-2895. doi: 10.1098/rstb.2009.0051
- Siddiqi A., Cronin T.W., Loew E.R., Vorobyev M., Summers K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology. 2004. V. 207(14). P. 2471-2485. doi: 10.1242/jeb.01047
- Sillman A.J., Carver J.K., Loew E.R. The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). Journal of Experimental Biology. 1999. V. 202(14). P. 1931-1938. doi: 10.1242/jeb.202.14.1931
- Sillman A.J., Johnson J.L., Loew E.R. Retinal photoreceptors and visual pigments in Boa constrictor imperator. Journal of Experimental Zoology. 2001. V. 290(4). P. 359-365. doi: 10.1002/jez.1076
- Sillman A.J., Ronan S.J., Loew E.R. Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1991. V. 243(1306). P. 93-98. doi: 10.1098/rspb.1991.0016
- Sillman A.J., Govardovskii V.I., Röhlich P., Southard J.A., Loew E.R. The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. Journal of Comparative Physiology A. 1997. V. 181. P. 89-101. doi: 10.1007/s003590050096
- Simões B.F., Sampaio F.L., Jared C., Antoniazzi M.M., Loew E.R., Bowmaker J.K., Rodriguez A., Hart N.S., Hunt D.M., Partridge J.C., Gower D.J. Visual system evolution and the nature of the ancestral snake. Journal of evolutionary biology. 2015. V. 28(7). P. 1309-1320. doi: 10.1111/jeb.12663
- Simões B.F., Sampaio F.L., Loew E.R., Sanders K.L., Fisher R.N., Hart N.S., Hunt D.M., Partridge J.C., Gower D.J. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2016a. V. 283(1823). P. 20152624. doi: 10.1098/rspb.2015.2624
- Simões B.F., Sampaio F.L., Douglas R.H., Kodandaramaiah U., Casewell N.R., Harrison R.A., Hart N.S., Partridge J.C., Hunt D.M., Gower D.J. Visual pigments, ocular filters and the evolution of snake vision. Molecular biology and evolution. 2016b. V. 33(10). P. 2483-2495. doi: 10.1093/molbev/msw148
- Smith M.A., Waugh D.A., McBurney D.L., George J.C., Suydam R.S., Thewissen J.G., Crish S.D. A comparative analysis of cone photoreceptor morphology in bowhead and beluga whales. Journal of Comparative Neurology. 2021. V. 529(9). P. 2376-2390. doi: 10.1002/cne.25101
- Springer M.S., Emerling C.A., Fugate N., Patel R., Starrett J., Morin P.A., Hayashi C., Gatesy J. Inactivation of cone-specific phototransduction genes in rod monochromatic cetaceans. Frontiers in Ecology and Evolution. 2016. V. 4. P. 61. doi: 10.3389/fevo.2016.00061
- Stovall R.H. Observations on the Micro-and Ultrastructure of the Visual Cells of Certain Snakes (Reptilia, Serpentes, Colubridae). Journal of Herpetology. 1976. V. 10(4). P. 269-275. doi: 10.2307/1563063
- Strauss O. The retinal pigment epithelium in visual function. Physiological reviews. 2005. V. 85(3). P. 845-881. doi: 10.1152/physrev.00021.2004
- Szamier R. B., Ripps H. The visual cells of the skate retina: Structure, histochemistry, and disc‐shedding properties. Journal of Comparative Neurology. 1983. V. 215(1). P. 51-62. doi: 10.1002/cne.902150105
- Szél A., Röhlich P., Govardovskii V. Immunocytochemical discrimination of visual pigments in the retinal photoreceptors of the nocturnal gecko Teratoscincus scincus. Experimental eye research. 1986. V. 43(6). P. 895-904. doi: 10.1016/0014-4835(86)90068-0
- Tachibanaki S., Arinobu D., Shimauchi-Matsukawa Y., Tsushima S., Kawamura S. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proceedings of the National Academy of Sciences. 2005. V. 102(26). P. 9329-9334. doi: 10.1073/pnas.0501875102
- Tachibanaki S., Tsushima S., Kawamura S. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proceedings of the National Academy of Sciences. 2001. V. 98. P. 14044–14049. doi: 10.1073/pnas.241396898
- Tachibanaki S., Yonetsu S. I., Fukaya S., Koshitani Y., Kawamura S. Low activation and fast inactivation of transducin in carp cones. Journal of Biological Chemistry. 2012. V. 287(49). P. 41186-41194. doi: 10.1074/jbc.M112.403717
- Tansley K. The gecko retina. Vision research. 1964. V. 4(1-2). P. 33-37. doi: 10.1016/0042-6989(64)90029-X
- Tansley K. The retina of two nocturnal geckos Hemidactylus turcicus and Tarentola mauritanica. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1959. V. 268. P. 213-220. doi: 10.1007/bf00362521
- Toomey M.B., Corbo J.C. Evolution, development and function of vertebrate cone oil droplets. Frontiers in Neural Circuits. 2017. V. 11. P. 97. doi: 10.3389/fncir.2017.00097
- Tretjakoff D.K. Sense organs of the river lamprey. University of Novorossijsk, Odessa. 1916. 647 p.
- Underwood G. Some suggestions concerning vertebrate visual cells. Vision research. 1968a. V. 8(4). P. 483-488. doi: 10.1016/0042-6989(68)90117-X
- Underwood G. A Contribution to the Classification of Snakes. Copeia. 1968b. V. 1968(1). P. 201-213. doi: 10.2307/1441587
- Underwood G. The eye. Biology of the Reptilia. Gans C., Parsons T.S. (eds). New York. Academic Press, 1970. V. 2 (Morphology B). P. 1-97.
- Underwood G. Reptilian retinas. Nature. 1951. V. 167(4240). P. 183-185. doi: 10.1038/167183a0
- Van-Eyk S.M., Siebeck U.E., Champ C.M., Marshall J., Hart N.S. Behavioural evidence for colour vision in an elasmobranch. Journal of Experimental Biology. 2011. V. 214(24). P. 4186-4192. doi: 10.1242/jeb.061853
- Vinberg F., Chen J., Kefalov V.J. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Progress in Retinal and Eye Research. 2018. V. 67. P. 87-101. doi: 10.1016/j.preteyeres.2018.06.001
- Vorobyev M. Coloured oil droplets enhance colour discrimination. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2003. V. 270(1521). P. 1255-1261. doi: 10.1098/rspb.2003.2381
- Wagner H.J., Partridge J.C., Douglas R.H. Observations on the retina and ‘optical fold’of a mesopelagic sabretooth fish, Evermanella balbo. Cell and tissue research. 2019. V. 378. P. 411-425. doi: 10.1007/s00441-019-03060-4
- Wald G., Brown P.K., Smith P.H. Iodopsin. The Journal of general physiology. 1955. V. 38(5). P. 623-681. doi: 10.1085/jgp.38.5.623
- Walls G.L. Ophthalmological implications for the early history of the snakes. Copeia. 1940. V. 1940(1). P. 1-8. doi: 10.2307/1439015
- Walls G.L. The Reptilian Retina: I. A new concept of visual-cell evolution. American journal of ophthalmology. 1934. V. 17(10). P. 892-915. doi: 10.1016/S0002-9394(34)93309-2
- Walls G.L. The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Mich. Cranbrook Institute of Science, 1942. 785 p. doi: 10.5962/bhl.title.7369
- Walls G.L. The visual cells of lampreys. The British Journal of Ophthalmology. 1935. V. 19(3). P. 129. doi: 10.1136/bjo.19.3.129
- Walls G.L. Visual purple in snakes. Science. 1932. V. 75(1948). P. 467-468. doi: 10.1126/science.75.1948.467
- Walls G.L., Judd H.D. The intra-ocular colour-filters of vertebrates. The British journal of ophthalmology. 1933. V. 17(11). P. 641. doi: 10.1136/bjo.17.11.641
- Wan Y.C., Navarrete Méndez M.J., O’Connell L.A., Uricchio L.H., Roland A.B., Maan M.E., Ron S.R., Betancourth-Cundar M., Pie M.R., Howell K.A., Richards-Zawacki C.L., Cummings M.E., Cannatella D.C., Santos J.C., Tarvin R.D. Selection on visual opsin genes in diurnal neotropical frogs and loss of the sws2 opsin in poison frogs. Molecular Biology and Evolution. 2023. V. 40(10). P. msad206. doi: 10.1093/molbev/msad206
- Warrant E. Vision in the dimmest habitats on earth. Journal of Comparative Physiology A. 2004. V. 190. P. 765-789. doi: 10.1007/s00359-004-0546-z
- Warrington R.E., Davies W.I., Hemmi J.M., Hart N.S., Potter I.C., Collin S.P., Hunt D.M. Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (Geotria australis, Gray). Journal of Comparative Neurology. 2021. V. 529(9). P. 2265-2282. doi: 10.1002/cne.25092
- Wilby D., Toomey M.B., Olsson P., Frederiksen R., Cornwall M.C., Oulton R., Kelber A., Corbo J.C., Roberts N.W. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). Journal of the Royal Society Interface. 2015. V. 12(111). P. 20150591. doi: 10.1098/rsif.2015.0591
- Witkovsky P., Yang C. Y., Ripps H. Properties of a blue-sensitive rod in the Xenopus retina. Vision Research. 1981. V. 21(6). P. 875-883. doi: 10.1016/0042-6989(81)90188-7
- Yanagawa M., Kojima K., Yamashita T., Imamoto Y., Matsuyama T., Nakanishi K., Yamano Y., Wada A., Sako Y., Shichida Y. Origin of the low thermal isomerization rate of rhodopsin chromophore. Scientific reports. 2015. V. 5(1). P. 11081. doi: 10.1038/srep11081
- Yokoyama S. Molecular Evolution of Vertebrate Visual Pigments. Progress in Retinal and Eye Research. 2000. V. 19(4). P. 385-419. doi: 10.1016/S1350-9462(00)00002-1
- Yokoyama S. Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics. 2008. V. 9. P. 259-282. doi: 10.1146/annurev.genom.9.081307.164228
- Yoshida M. Some observations on the patency in the outer segments of photoreceptors of the nocturnal gecko. Vision Research. 1978. V. 18(2). P. 137-143. doi: 10.1016/0042-6989(78)90178-5
- Young H.M., Pettigrew J.D. Cone photoreceptors lacking oil droplets in the retina of the echinda, Tachyglossus aculeatus (Monotremata). Visual Neuroscience. 1991. V. 6(5). P. 409-420. doi: 10.1017/S0952523800001279
- Young R.W. The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Investigative ophthalmology & visual science. 1978. V. 17(2). P. 105-116.
- Yovanovich C.A., Koskela S.M., Nevala N., Kondrashev S.L., Kelber A., Donner K. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2017. V. 372. P. 20160066. doi: 10.1098/rstb.2016.0066
- Yovanovich C.A., Pierotti M.E., Rodrigues M.T., Grant T. A dune with a view: the eyes of a neotropical fossorial lizard. Frontiers in zoology. 2019. V. 16. P. 1-10. doi: 10.1186/s12983-019-0310-4
- Zhang H., Yokoyama S. Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus. Gene. 1997. V. 191(1). P. 1-6. doi: 10.1016/S0378-1119(96)00864-5
- Zhang X., Wensel T.G., Kraft T.W. GTPase regulators and photoresponses in cones of the eastern chipmunk. Journal of Neuroscience. 2003. V. 23(4). P. 1287-1297. doi: 10.1523/jneurosci.23-04-01287.2003
- Zhang X., Wensel T.G., Yuan C. Tokay gecko photoreceptors achieve rod‐like physiology with cone‐like proteins. Photochemistry and photobiology. 2006. V. 82(6). P. 1452-1460. doi: 10.1562/2006-01-05-ra-767
- Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular phylogenetics and evolution. 2016. V. 94. P. 537-547. doi: 10.1016/j.ympev.2015.10.009
Arquivos suplementares
