Effect of “dry” immersion on the performance characteristics of a visual-motor task using a joystick depending on the direction of hand movement

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Issues related to controlling arm movements in space flight (SF) are extremely important. The success of an operator’s activities depends on the safety of the SF. To study the impact of the SF factor (support unloading), a ground-based “Dry” Immersion (DI) model is used. The study was conducted for 7 days under DI conditions. During the visual-motor task, 10 participants moved the cursor from the center of the screen to randomly appearing peripheral targets using a joystick. The DI effect on cursor movement parameters in four directions was evaluated. There were differences in time and accuracy depending on the hand movement direction in control studies that persisted during and after DI exposure. In the early days of DI, most estimated cursor movement parameters deteriorated, regardless of the direction. By the end of the immersion, they had recovered. The degree of DI influence on cursor movement differed depending on the direction of hand movement, and was most pronounced at the beginning of DI. There was minimal impact of DI on movement from left to right.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Zobova

State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lnz75@mail.ru
Ресей, 123007, Moscow

N. Miller

State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences

Email: lnz75@mail.ru
Ресей, 123007, Moscow

Әдебиет тізімі

  1. Badakva A.M., Miller N.V., Zobova L.N., Roshchin V.Yu. Studies of the planar unloading effect on cortical mechanisms of arm movements control in immersion experiments with primates. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2019. V. 53 (3). P. 33–38. doi: 10.21687/0233-528X-2019-53-3-33-38. (in Russian).
  2. Badakva A.M., Miller N.V., Zobova L.N., Roschin V.Y. Influence of water immersion of monkeys on the activity of posterior parietal cortex structures involved in planning and correcting hand movements in performing a motor task. Hum. Physiol. 2021. V. 47(3). P. 254-259. doi: 10.1134/S0362119721030038.
  3. Bernshtein N.A. Physiology of movement and activity. Moscow. Meditsina Publ. 1966. 349 p. (in Russian).
  4. Kozlovskaya I.B. Gravity and the tonic postural motor system. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2017. V. 51(3). P. 5–21. doi: 10.21687/0233-528X-2017-51-3-5-21 (in Russian).
  5. Kornilova L. N., Glukhikh D., Habarova E., et al. Visual –manual tracking after long spaceflights. Hum. Physiol. 2016. V. 42. P. 301-311. doi: 10.1134/S0362119716030105
  6. Kornilova, L.N., Naumov, I.A., Glukhikh, D.O. et al. Vestibular function and space motion sickness. Hum. Physiol. 2017. V. 43. P. 557-568. doi: 10.1134/S0362119717050085.
  7. Lyakhovetskii V.A., Zelenskaya I.S., Karpinskaya V.Yu, Bekreneva M.P., Zelenskiy K.A., and Tomilovskaya E.S. Influence of dry immersion on the characteristics of cyclic precise hand movements. Hum. Physiol. 2022. V. 48. P. 655–661. doi: 10.1134/S0362119722600291.
  8. Miller N.V., Zobova L.N., Roschin V.Y., Badakva A.M. Procedure of check testing in the process of studying the effects of dry immersion on characteristics of performing s motor-ocular task. Aviakosmicheskaya i Ekologicheskaya Meditsina. 2024. V. 58(1). P. 88-93. doi: 10.21687/0233-528X-2017-51-3-5-21. (in Russian).
  9. Miller N.V., Zobova L.N., Badakva A.M. The Effect of Dry Immersion on the Characteristics of Joystick Control during the Performance of a Visual-Motor Task in Men and Women// Hum. Physiol. 2024. V. 50 (4). P. 358-365. doi: 10.1134/S0362119724700804.
  10. Berger M., Mescheriakov S., Molokanova E., Lechner-Steinleitner S., Seguer N., Kozlovskaya I. Pointing arm movements in short and long_term space flights. Aviat. Space Environ. Med. 1997. V. 68(9). P. 781.
  11. Boritz J., Booth K.S., Cowan W.B. Fitts’s law studies of directional mouse movement. Human performance. 1991. V. 1 (6). P. 216-223.
  12. Gordon J., Ghilardi M.F., Cooper S.E., Ghez C. Accuracy of planar reaching movements: II. Systematic extent errors resulting from inertial anisotropy. Experimental brain research. 1994. V. 99. P. 112-130. doi: 10.1007/BF00241416
  13. Fisk J.D., Goodale M.A. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp. Brain Res. 1985. V. 60(1). P. 159-178. doi: 10.1007/BF00237028.
  14. Gaveau J., Paizis C., Berret B., Pozzo T., Papaxanthis C. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Journal of neurophysiology. 2011. V. 106(2). P. 620-629. doi: 10.1152/jn.00081.2011
  15. Holden K., Greene M., Vincent Cross E., Sándor A., Thompson S., Feiveson A., Munson B. Effects of long-duration microgravity and gravitational transitions on fine motor skills. Human Factors. 2023. V. 65(6). P. 1046-1058. doi: 10.1177/00187208221084486
  16. Kozlovskaya I.B. The nature and characteristics of a gravitational ataxia. Physiologist. 1983. V. 26, P. 108–109.
  17. Mechtcheriakov, S., Berger, M., Molokanova, E., Holzmueller G., Wirtenberger W., Lechner-Steinleitner S., De Col C., Kozlovskaya I., Gerstenbrand F. Slowing of human arm movements during weightlessness: the role of vision. Eur. J. Appl. Physiol. 2002. V. 87(6). P. 576-583. doi: 10.1007/s00421-002-0684-3.
  18. Murata A., Iwase H. Extending Fitts’ law to a three-dimensional pointing task. Human movement science. 2001. V. 20(6). P. 791-805. doi: 10.1016/S0167-9457(01)00058-6
  19. Okuuchi S., Tani K., Kushiro K. Temporal properties of the speed-accuracy trade-off for arm-pointing movements in various directions around the body. Plos one. 2023. V. 18(9). P. e0291715. doi: 10.1371/journal.pone.0291715.
  20. Paloski, W.H., Oman, C.M., Bloomberg, J.J., Reschke M.F., Wood1 S.J., Harm D.L., Peters B.T., Mulavara A.P., Locke J.P., Stone L.S. Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J. Gravity Physiol. 2008. V. 15(2). P. 1–29.
  21. Papaxanthis C., Pozzo T., Popov K.E., McIntyre J. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force. Exp. Brain Res. 1998. V. 120(4). P. 496-502. doi: 10.1007/s002210050423.
  22. Papaxanthis C., Pozzo T., McIntyre J. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity //Neuroscience. 2005. V. 135(2). P. 371-383. doi: 10.1016/j.neuroscience.2005.06.063.
  23. Pechenkova E., Nosikova I., Rumshiskaya A., Litvinova L., Rukavishnikov I., Mershina E., Sinitsyn V., Van Ombergen A., Jeurissen B., Jillings S., Laureys S., Sijbers J., Grishin A., Chernikova L., Naumov I., Kornilova L., Wuyts F.L., Tomilovskaya E., Kozlovskaya I. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front. Physiol. 2019. V. 10. Article 761. doi: 10.3389/fphys.2019.00761.
  24. Tomilovskaya E., Shigueva T., Sayenko D., Rukavishnikov I., Kozlovskaya I. Dry immersion as a ground-based model of microgravity physiological effects. Front. Physiol. 2019. V. 10. Article. 284. doi: 10.3389/fphys.2019.00284.
  25. Tomsia M., Cieśla J., Śmieszek J., Florek S., Macionga A., Michalczyk K., Stygar D. Long-term space missions’ effects on the human organism: what we do know and what requires further research. Front. Physiol. 2024. V. 15. Article. 1284644. doi: 10.3389/fphys.2024.1284644.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Comparison of the temporal and precision parameters of cursor movement (M ± se) during the performance of a visual-motor task depending on the direction of movement (1 – up, 2 – right, 3 – down, 4 – left). a – duration of task performance T (s); b – “latent” reaction time tlat (s); c – time of cursor movement along the trajectory ttr (s); d – precision parameter averaged over the entire length of the trajectory Cos(ɑ)avg; d – precision parameter in the acceleration section Cos(ɑ)usk; e – precision parameter in the deceleration section Cos(ɑ)torm. The abscissa axis shows the days of the study.

Жүктеу (958KB)
3. Fig. 2. Dynamics of the difference in the cursor movement parameters (M ± se) from the control values (in percent) during the performance of a visual-motor task for different directions of movement (1 – up, 2 – right, 3 – down, 4 – left). a – duration of task performance T (s); b – “latent” reaction time tlat (s); c – time of cursor movement along the trajectory ttr (s); d – accuracy parameter averaged over the entire length of the trajectory Cos(ɑ)avg; d – accuracy parameter in the acceleration section Cos(ɑ)usk; e – accuracy parameter in the deceleration section Cos(ɑ)torm. The abscissa axis shows the days of the study.

Жүктеу (823KB)

© Russian Academy of Sciences, 2025