Parameters of Thermal Radiation of a Hydrogen Flame
- 作者: Shebeko Y.N.1
-
隶属关系:
- All Russian Research Institute for Fire Protection of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
- 期: 卷 44, 编号 7 (2025)
- 页面: 100-105
- 栏目: Combustion, explosion and shock waves
- URL: https://kazanmedjournal.ru/0207-401X/article/view/687635
- DOI: https://doi.org/10.31857/S0207401X25070109
- ID: 687635
如何引用文章
详细
High attention is now devoted to a fire safety of objects with a presence of hydrogen due to a rapid development of a hydrogen energetics. An evaluation of a risk for the objects of hydrogen energetics is one of the key tasks for a such development. A decision of this task requires an information on a radiation intensity of hydrogen flames. But this information published in literature is often non-complete and sometimes contradictive. Therefore, this study is aimed on a review of literature sources published in Russian and international journals. The main value required for the fire risk evaluation is a surface radiation intensity of hydrogen flames. In this study four types of the flames were considered: gaseous jet flame; jet flame of liquid hydrogen; pool fire of liquid hydrogen; fireball. It was noted that surface thermal radiation intensity of the hydrogen flames is remarkably lower in comparison with hydrocarbon flames. The surface thermal radiation intensity Ef of a hydrogen gaseous jet flame cfn be accepted to be equal 33 kW/m2 in the fire risk calculations. The Ef value for the hydrogen fireball can be accepted to be equal 330 kW/m2. The surface thermal radiation intensity for combustion of liquid hydrogen (both for the jet flame and the pool fire) can be accepted to be equal 80 kW/m2.
全文:

作者简介
Yu. Shebeko
All Russian Research Institute for Fire Protection of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
编辑信件的主要联系方式.
Email: yn_shebeko@mail.ru
俄罗斯联邦, Balashikha
参考
- Gordienko D.M., Shebeko Yu.N. // Occupational Safety in Industry. 2022. № 2. P. 7. [In Russian]
- Shebeko Yu.N. // Fire Safety. 2020. № 4. P. 36. [In Russian]
- Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Rus. J. Phys. Chem. B. 2023. V. 42. N. 3. P. 70.
- Troshin K.Ya., Rubtsov N.M., Tsvetkov G.I., Chernish V.I., Shamshin I.O. // Russ. J. Phys. Chem. B. 2023. V. 17. N. 2. P. 433.
- Sumskoi S.I., Sophin A.S., Zainetdinov S.H., Lisanov M.V., Agapov A.A. // Rus. J. Chem. Phys. B. 2023. V. 17. N. 2. P. 419.
- Vasilev A.A., Vasilev V.A. // Combustion, Explosion and Shock Waves. 2024. V. 60. № 5. P. 30.
- Ekoto I.W., Houf W.G., Ruggles A.J., Creitz L.W., Li J.X. // Proc. 9th International Pipeline Conference IPC 2012. Calgary, Alberta, Canada (IPC 2012-90535), 2012.
- Schefer R.W., Houf W.G., Bourne B., Colton J. // Int. J. Hydrogen Energy. 2006. V. 31. P. 1332.
- Schefer R.W., Houf W.G., Williams T.C., Bourne B., Colton J. // Int. J. Hydrogen Energy. 2007. V. 32. P. 2081.
- Studer E., Jamous D., Jallais S. et al. // Int. J. Hydrogen Energy. 2009. V. 34. P. 9611.
- Lowesmith D.J., Hankinson G. // Process Saf. Environ. Prot. 2012. V. 90. P. 108.
- Lowesmith D.J., Hankinson G. // Process Safety and Environmental Protection. 2013. V. 91. P. 101.
- Wang C.J., Wen J.X., Chen Z.B., Dembele S. // Int. J. Hydrogen Energy. 2014. V. 39. P. 20560.
- Houf W., Schefer R. // Int. J. Hydrogen Energy. 2007. V. 32. P. 136.
- Gomez-Mares M., Zarate L., Casal J. // Fire Safety J. 2008. V. 43. № 8. P. 583.
- Karpov V.L. // Pozharovzryvobezopasnost. 1999. Т. 8. № 5. P. 38. [In Russian]
- Friedrich A., Breitung W., Stern G. et al. // Int. J. Hydrogen Energy. 2012. V.37. P.17589.
- Hecht E.S., Chowdhury B.R. // Int. J. Hydrogen Energy. 2021. V.46. P.12320.
- Hall J.E., Hooker P., Willoughby D. // Int. J. Hydrogen Energy. 2014. V. 39. P. 20547.
- NFPA 2: Hydrogen Technologies Code. National Fire Protection Association, 2023.
- Zalosh R. // Proc. 5th Int. Seminar on Fire and Explosion Hazards. Edinburgh. 2008. P. 149.
- Ustolin F., Paltrinieri N., Landucci G. // J. Loss Prevention Proc. Ind.. 2020. V. 68. P. 104323.
- Wingerden K., Kluge M., Karim A., Ustolin F., Paltnieri N. // Chem. Eng. Trans. 2022. V. 90. P. 547.
- Bernardy C., Habib A.K., Kluge M. et al. // J. Loss Prevention Proc. Ind. 2025. V. 94. P. 105491.
- Betteridge S., Philips L. Large scale pressurized LNG BLEVE experiments. Symposium series № 160. Shell, 2015.
- Roberts A.F. // Fire Safety J. 1982. V. 4. P. 197.
补充文件
