Stratification and combustion of hydrogen-air mixtures in vertical channel

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In the current work, experimental investigation of propagation and combustion of a inhomogeneous hydrogen-air mixture in a vertical channel were conducted. The average volume fraction of hydrogen varied from 10 to 30%. Data on the dynamics of hydrogen propagation along the channel height were obtained. In combustion experiments, data on the flame front propagation velocity and excess pressure were obtained. The effect of the mixture non-uniformity on combustion characteristics was estimated.

Sobre autores

S. Yakovlev

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

V. Stakhanov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

E. Bezgodov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

A. Tarakanov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

I. Popov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

S. Pasyukov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

M. Nikiforov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Autor responsável pela correspondência
Email: yakovlevsa@vniitf.ru
Snezhinsk, Russia

Bibliografia

  1. Qingchun H., Xihong Z., Hog H. // Int. J. Hydrogen Energy. 2022. V. 48. P. 13705. https://doi.org/10.1016/j.ijhydene.2022.11.302
  2. Gelfand B.E., Silnikov M.B., Medvedev S.P., Khomik S.V. Termogazodinamika goreniya i vzryva vodoroda. St Peterburg.: St. Petersburg Polytechnic University Press, 2009 [In Russian].
  3. Vollmer K., Ettner F., Sattelmayer T. // Combustion Sci. Techn. 2012. V. 184. № 10—11. P. 1903. https://doi.org/10.1080/00102202.2012.690652
  4. Vollmer K., Ettner F., Sattelmayer T. // Sci. Techn. Energetic Mater: J. Japan Explosive Soc. 2011. V. 72. P. 74.
  5. Ciccarelli G., Dorofeev S. // Progress Energy Comb. Sci. 2008. V. 34. P. 499. https://doi.org/10.1016/j.pecs.2007.11.002
  6. Scarpa R., Studer E., Kudriakov S. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 9009. https://doi.org/10.1016/j.ijhydene.2018.06.160
  7. Rudy W., Kuznetsov M., Porowski R. et al. // Proc. Combustion Instit. 2013. V. 34. № 2. P. 1965. https://doi.org/10.1016/j.proci.2012.07.019
  8. Wang L., Ma H., Shen Z. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 9. P. 4645. https://doi.org/10.1016/ j.ijhydene.2018.01.080
  9. Dorofeev S., Kuznetsov M., Alekseev V. et al. // J. Loss Prev. Proc. Ind. 2001. V. 14. № 6. P. 583. https://doi.org/10.1016/S0950-4230(01)00050-X
  10. Veser A., Breitung W., Dorofeev // J. Phys. IV. 2002. V. 12. № 7. Р. 333. https://doi.org/10.1051.jp4:20020301
  11. Peraldi O., Knystautus R., Lee J. // Proc. 21th Combust. Symp. (Intern.) on Combust. Elsevier, 1988. V. 21. Issue 1. Р. 1629. https://doi.org/10.1016/S0082-0784(88)80396-5
  12. Boeck L. R. Dis. doktor – ingenieurs. München: Techn. Universität München Institut für Energietechnik, 2015.
  13. Bentaib A., Bleyer A., Meynet N. et al. // Ann. Nucl. Energy. 2014. V. 74. P. 143. https://doi.org/10.1016/j.anucene.2014.07.012
  14. Bentaib A., Bleyer A., Heinz W. et al. // ERMARS. 2007.
  15. Kuznetsov M., Alekseev V., Dorofeev S. et al. // Proc. Symp. (Intern.) on Combustion. Elsevier, 1998. V. 27. № 2. Р. 2241. https://doi.org/10.1016/S0082-0784(98)80073-8
  16. Kuznetsov M., Yanez J., Grune J. et al. // Nucl. Eng. Design. 2015. V. 286. P. 36. https://doi.org/10.1016/j.nucengdes.2015.01.016
  17. Friedrich A., Grune J., Sempert K. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 17. P. 9041. https://doi.org/10.1016/j.ijhydene.2018.06.098
  18. Yakovlev S. A., Bezgodov E. V., Stakhanov V. V. et al. // Atomic Energy. 2023. V. 134. № 5-6. P. 380. https://doi.org/10.1007/s10512-024-01069-9
  19. Dorofeev S.B., Sidorov V.P. Dvoinishnikov A.E. // Comb. and Flame. 1996. V. 104. P. 95. https://doi.org/10.1016/0010-2180(95)00113-1
  20. Kiverin A.D., Medvedkov I.S., Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. №6. P.1075. https://doi.org/10.1134/s1990793122060057
  21. Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1112. https://doi.org/10.1134/s1990793122060082
  22. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 974. https://doi.org/10.1134/s1990793123040309
  23. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1294. https://doi.org/10.1134/s1990793123060246
  24. Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 965. https://doi.org/10.1134/s1990793124700416
  25. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics. 1998.
  26. Baraldi D., Melideo D., Kotchourko A. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 11. P. 7633. https://doi.org/10.1016/j.ijhydene.2016.05.212
  27. Belyaev P.E., Makeeva I.R., Mastyuk D.A. et al. // Abstr. Rep. XVII All-Russian Sympos. on Combust., 2024. P. 128 [In Russian]. ISBN: 978-5-91845-116-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025