Binuclear Diphenyltin(IV) Complexes with Salicylaldimine Ligands. Synthesis, Structure, Electrochemical Properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New binuclear tin(IV) complexes based on salicylic Schiff bases and diphenyltin oxide Ph2SnO were obtained. The structures of the complexes were confirmed by 1H, 13C and 119Sn NMR spectroscopy and X-ray diffraction analysis (CCDC 2433411). UV-Vis spectroscopy of complexes 1–4 showed that a bathochromic shift of all ligand absorption bands was observed upon complexation with the metal fragment. The ability of complexes 1–4 to undergo electrochemical transformations was investigated by cyclic voltammetry. In all cases, the oxidation and reduction of the complexes are irreversible. In the cases of complexes 2–4 with a conjugated bridge, the oxidation of two metal fragments occurs at one potential, whereas complex 1 with an unconjugated adipic bridge has two peaks on the oxidation curve at different potentials, which is probably since the oxidation of two different ‘ends’ of the molecule occurs at different potentials.

全文:

受限制的访问

作者简介

V. Klok

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

P. Shangin

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

I. Krylova

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

M. Minyaev

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

M. Syroeshkin

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

V. Pechennikov

First Moscow State Medical University

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119048

M. Egorov

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

E. Nikolaevskaya

Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Moscow

编辑信件的主要联系方式.
Email: en@ioc.ac.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mend. Commun. 2023. V. 33, P. 733. https://doi.org/10.1016/j.mencom.2023.10.001
  2. Cozzi P.G. // Chem. Soc. Rev. 2004. V. 33. P. 410. https://doi.org/10.1039/b307853c
  3. Fallah-Mehrjardi M., Kargar H., Munawar K.S. // Inorg. Chim. Acta. 2024. V. 560. P. 121835. https://doi.org/10.1016/j.ica.2023.121835
  4. Juyal V.K., A. Pathak M., Panwar S.C. et al. // J. Organomet. Chem. 2023. V. 999. P. 122825. https://doi.org/10.1016/j.jorganchem.2023.122825
  5. Iacopetta D., Catalano A., Ceramella J. et al. // Molecules. 2025. V. 30. P. 207. https://doi.org/10.3390/molecules30020207
  6. Lindoy L.F., Park K.-M., Lee S.S. // Chem. Soc. Rev. 2013. V. 42. P. 1713. https://doi.org/10.1039/C2CS35218D
  7. Middya P., Roy D., Chattopadhyay S. // Inorg. Chim. Acta. 2023. V. 548. P. 121377. https://doi.org/10.1016/j.ica.2023.121377
  8. Zhang J., Xu L., Wong W.-Y. // Coord. Chem. Rev. 2018. V. 355. P. 180. https://doi.org/10.1016/j.ccr.2017.08.007
  9. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
  10. Singh H.L., Khaturia S., Solanki V.S. et al. // J. Indian Chem. Soc. 2023. V. 100. P. 100945. https://doi.org/10.1016/j.jics.2023.100945
  11. Dieng M., Gningue-Sall D., Jouikov V. // Main Group Met. Chem. 2012. V. 35. P. 141. https://doi.org/10.1515/mgmc-2012-0059
  12. Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. P. 17127. https://doi.org/10.1039/C8DT03397H
  13. Nikolaevskaya E.N., Shangin P.G., Starikova et al. // Inorg. Chim. Acta. 2019. V. 495. P. 119007. https://doi.org/10.1016/j.ica.2019.119007
  14. Shangin P.G., Krylova I.V., Lalov A.V. et al. // RSC Adv. 2021. V. 11. P. 21527. https://doi.org/10.1039/D1RA02691G
  15. Shangin P.G., Akyeva A.Y., Vakhrusheva D.M. et al. // Organometallics. 2023. V. 42. P. 2541. https://doi.org/10.1021/acs.organomet.2c00607
  16. Kozmenkova A.Y., Timofeeva V.A., Mankaev B.N. et al. // Eur. J. Inorg. Chem. 2021. P. 2755. https://doi.org/10.1002/ejic.202100369
  17. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
  18. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
  19. Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al // Inorg. Chem. Comm. 2016. V. 69. P. 94. https://doi.org/10.1016/j.inoche.2016.05.003
  20. Smolyaninov I.V., Burmistrova D.A., Pomortseva N.P. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124. https://doi.org/10.1134/S1070328423700446
  21. Protasenko N.A., Baryshnikova S.V., Cherkasov A.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 478. https://doi.org/10.1134/S1070328422070077
  22. Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970. https://doi.org/10.1039/C2DT30656E
  23. Krylova I.V., Proshutinskaya V.Yu., Labutskaya L.D. et al. // J. Organomet. Chem. 2025. V. 1028. P. 123527. https://doi.org/10.1016/j.jorganchem.2025.123527
  24. Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/D3NJ01993D
  25. Krylova I.V., Saverina E.A., Rynin S.S. et al. // Mend. Commun. 2020. V. 30. P. 563. https://doi.org/10.1016/j.mencom.2020.09.003
  26. Pandey V.K., Singh V.K., Chandra S. et al. // J. Coord. Chem. 2019. V. 72. P. 1537. https://doi.org/10.1080/00958972.2019.1606908
  27. Dubey M., Kumar A., Gupta R.K. et al. // Chem. Commun. 2014. V. 50. P. 8144. https://doi.org/10.1039/C4CC02591A
  28. Ali M.S., Kuraijam D., Karnik S. et al. // Kuwait J. Sci. 2023. V. 50. P. 1. https://doi.org/10.48129/kjs.21599
  29. Wilson B.H., Scott H.S., Qazvini O.T. et al. // Chem. Commun. 2018. V. 54. P. 13391. https://doi.org/10.1039/C8CC07227B
  30. Rakesh K.P., Vivek H.K., Manukumar H.M. et al. // RSC. Adv. 2018. V. 8. P. 5473. https://doi.org/10.1039/C7RA13661G
  31. Li Z., Wang Q., Wang J. et al. // Inorg. Chim. Acta. 2020. V. 500. P. 119231. https://doi.org/10.1016/j.ica.2019.119231
  32. Perrin D.D., Armarego W.Li.F., Perrin D.R. Purification of Laboratory Chemicals. Oxford: Pergamon Press, 1988.
  33. CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.
  34. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053273314026370
  35. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053229614024218
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 229. http://doi.org/10.1107/S0021889808042726

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Synthesis of complexes I–IV using ligands L¹–L⁴.

下载 (358KB)
3. Fig. 1. Molecular structure of complex III. Hydrogen atoms are not shown. Selected bond lengths (Å): Sn(1)–O(1) 2.0755(19), Sn(1)–O(2) 2.1307(17), Sn(1)–N(1) 2.163(2), Sn(2)–O(3) 2.0723(18), Sn(2)–O(4) 2.1281(17), Sn(2)–N(3) 2.175(2), N(1)–C(1) 1.299(4), N(1)–N(2) 1.392(3), N(2)–C(20) 1.308(4), N(3)–N(4) 1.396(3), N(3)–C(28) 1.293(3), N(4)–C(27) 1.315(3).

下载 (268KB)
4. Fig. 2. Ultraviolet spectra of complexes I (a) and II (b) (5 × 10⁻⁵ M) and the starting ligands L¹ and L² (2.5 × 10⁻⁵ M) in DMF.

下载 (117KB)
5. Fig. 3. Ultraviolet spectra of complexes III (a) and IV (b) (4 × 10⁻⁵ M) and the initial ligands L³ and L⁴ (1 × 10⁻⁴ M) in DMF.

下载 (109KB)
6. Fig. 4. CVA curves of complex I and the initial ligand L¹. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

下载 (142KB)
7. Fig. 4. CVA curves of complex I and the initial ligand L¹. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

下载 (134KB)
8. Fig. 5. CVA curves of complex II and the initial ligand L². Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

下载 (134KB)
9. Fig. 6. CVA curves of complex III and the initial ligand L³. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

下载 (135KB)
10. Fig. 7. CVA curves of complex IV and the initial ligand L⁴. Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potential values ​​are given relative to the Fc/Fc⁺ pair, potential scan rate 0.1 V s⁻¹. a) reduction; b) oxidation.

下载 (128KB)
11. Fig. 8. CVA curves of complex IV reduction at different potential scan rates (0.1–1 V s⁻¹). Concentration 2.5 mM in 0.1 M NBu₄PF₆/DMF, potentials are given relative to the Fc/Fc⁺ pair.

下载 (171KB)

版权所有 © Российская академия наук, 2025