Effect of Synthesis and Crystallization Conditions on the Composition and Structure of Europium(III) Mixed-Carboxylate Benzoate–Pentafluorobenzoate Complexes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In the present work, the influence of the nature of the solvate molecules and N-donor ligands on the structures of the benzoate–pentafluorobenzoate europium complexes was investigated. It was established that the reaction of europium benzoate (bz) and pentafluorobenzoate (pfb) with 1,10-phenanthroline (phen) in acetonitrile in the presence of toluene, o-xylene, or dichloromethane leads to the formation of compounds [Eu2(phen)2(pfb)4(bz)2]·4C6H5CH3 (I), [Eu2(phen)2(pfb)4(bz)2]·4C6H4(CH3)2 (II), and [Eu2(phen)2(pfb)4 (bz)2]·2.898CH2Cl2 (III), respectively, which possess similar structures. Using quinoline (quin) as the N-donor ligand, mixed-carboxylate coordination polymer crystals [Eu(H₂O)(pfb)2(bz)]n·2n(quin) (IV) were obtained in good yield. The synthesized compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, and CHN elemental analysis. Non-covalent interactions were analyzed by Hirshfeld surface analysis.

Texto integral

Acesso é fechado

Sobre autores

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shmelevma@yandex.ru
Rússia, Moscow

D. Lebedev

Faculty of Chemistry, HSE University

Email: shmelevma@yandex.ru
Rússia, Moscow

A. Chistyakov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

J. Voronina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

L. Efromeev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Faculty of Chemistry, HSE University

Email: shmelevma@yandex.ru
Rússia, Moscow; Moscow

A. Rogachev

MIREA — Russian technological university

Email: shmelevma@yandex.ru
Rússia, Moscow

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

I. Eremenkoa

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: shmelevma@yandex.ru
Rússia, Moscow

Bibliografia

  1. Singh P., Kachhap S., Singh P., Singh S.K. // Coord Chem Rev. 2022. V. 472. № 214795.
  2. Marin R., Jaque D. // Chem. Rev. 2021. V. 121. № 3. P. 1425.
  3. Singh A.K. // Coord Chem Rev. 2022. V. 455. № 214365.
  4. Chen C., Li C., Shi Z. // Adv. Sci. 2016. V. 3. № 10. № 1600029.
  5. Crawford S.E., Ohodnicki P.R., Baltrus J.P. // J. Mater. Chem. C. 2020. V. 8. P. 7975.
  6. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. // Molecules. 2021. V. 26. № 14. Р. 4296.
  7. Peng X.X., Wang M.X., Zhang J.L. // Coord Chem Rev. 2024. V. 519. P. 216096.
  8. Paderni D., Giorgi L., Fus V. et al. // Coord Chem Rev. 2021. V. 429. P. 213639.
  9. Li S., Zhou L., Zhang H.// Light Sci Appl. 2022. V. 11. P. 177.
  10. Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393.
  11. Ferdiana N.A., Bahti H.H., Kurnia D., Wyantuti S. // Sens. Bio-Sens. Res. 2023. V. 41. P. 100573.
  12. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 830.
  13. Lima N.B.D., Silva A.I.S., Gonçalves S.M.C., Simas A.M. // J. Lumin. 2016. V. 170. P. 505.
  14. Melo L.L.L.S., Castro Jr. G.P., Gonçalves S.M.C. // RSC Adv. 2017. V. 7. № 34. P. 20811.
  15. Melo L.L.L.S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. № 5. P. 3265.
  16. Gogoleva N.V., Shmelev M.A., Chistyakov A.S. // Mendeleev Commun. 2024. V. 34. № 4. P. 484.
  17. Shmelev M. A., Gogoleva N. V., Ivanov V. K. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 539. https://doi.org/10.1134/S1070328422090056
  18. Puntus L., Lyssenko K. // J. Rare Earths. 2008. V. 26. № 2. P. 146.
  19. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  20. Silva A.I.S., Santos V.F.C., Lima N.B.D. et al. // RSC Adv. 2016. V. 6. P. 90934.
  21. Shmelev M.A., Voronina J.K., Evtyukhin M.A. et al. // Inorganics. 2022. V. 10. № 11. P. 194.
  22. Voronina J.K., Yambulatov D.S., Chistyakov A.S. et al. // Crystals. 2023. V. 13. № 4. Р. 678.
  23. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 224. https://doi.org/10.1134/S1070328422040042
  24. Zhang S., Chen A., An Y., Li Q. // Matter. 2024. V. 7. № 10. P. 3317.
  25. Wang L., Deng J., Jiang M. et al // J. Mater. Chem. A. 2023. V. 11. P. 11235.
  26. Shmelev M.A., Kiskin M.A., Voronina J.K. et al. // Materials. 2020. V. 13. № 24. Р. 5689.
  27. Larionov S.V., Glinskaya L.A., Leonova T.G. et al. // Russ. J. Coord. Chem. 2009. V. 35. P. 798. https://doi.org/10.1134/S1070328409110025
  28. Khiyalov M.S., Amiraslanov I.R., Musaev F.N., Mamedov Kh.S. // Sov. J. Coord. Chem. 1982. V. 8. P. 548.
  29. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  32. Thomas S.P., Spackman P.R., Jayatilaka D., Spackman M.A. // J. Chem. Theor. Comput. 2018. V. 14. P. 1614.
  33. Shmelev M.A., Levina A.A., Chistyakov A.S. et al. // Mendeleev Commun. 2025. V. 35. № 1. P. 35.
  34. Shmelev M.A., Voronina Yu.K., Gogoleva N.V. et al. // Russ. Chem. Bull. 2020. V. 69. № 8. P. 1544.
  35. Shmelev M.A., Gogoleva N.V., Sidorov A.A. et al. // ChemistrySelect. 2020. V. 5. № 28. P. 8475.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of complexes I (a), II (b), III (c). Hydrogen atoms are not shown. The dotted lines indicate π···π- and C‒F···π-interactions.

Baixar (547KB)
3. Fig. 2. Fragment of the crystal packing of complexes I (a) and III (b). The dotted lines show π···π- and C‒F···π-interactions.

Baixar (970KB)
4. Fig. 3. Fragment of the crystal packing of compound IV. The dotted lines show π···π-interactions and hydrogen bonds.

Baixar (686KB)
5. Fig. 4. Hirschfeld surface for complexes I (a), II (b), III (c) and IV (d).

Baixar (487KB)
6. Fig. 5. Two-dimensional fingerprint plots corresponding to the C···F (a), H···F (b), O···H (c), C···H (d), C···C (e), and H···H (e) interactions in structure I.

Baixar (625KB)
7. Fig. 6. Two-dimensional fingerprint plots corresponding to the C···F (a), H···F (b), O···H (c), C···H (d), C···C (e), and H···H (e) interactions in structure II.

Baixar (654KB)
8. Fig. 7. Two-dimensional fingerprint plots corresponding to the interactions C F (a), H F (b), O H (c), C H (d), C C (e), H H (f), C Cl (g), and H Cl (h) in structure III.

Baixar (979KB)
9. Fig. 8. Two-dimensional fingerprint plots corresponding to the C···F (a), H···F (b), O···H (c), C···H (d), C···C (e), and H···H (e) interactions in structure IV.

Baixar (841KB)
10. Scheme 1. Synthesis of compounds I‒IV.

Baixar (314KB)

Declaração de direitos autorais © Российская академия наук, 2025