picoFAST: New Genetically-Encoded Fluorescent Label

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new genetically encoded fluorescent tag picoFAST has been proposed, which contains only 88 amino acids and is currently the smallest fluorogen-activating protein. It was shown that the picoFAST protein in complex with HBR-DOM2 fluorogen can be used as a genetically encoded fluorescent label for staining individual structures of living cells.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Baleeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Хат алмасуға жауапты Автор.
Email: svetlanakr2002@mail.ru
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997

M. Goncharuk

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: svetlanakr2002@mail.ru
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997

I. Ivanov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: svetlanakr2002@mail.ru
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997

M. Baranov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Pirogov Russian National Research Medical University

Email: svetlanakr2002@mail.ru
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovitianova 1, Moscow, 117997

Y. Bogdanova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Pirogov Russian National Research Medical University

Email: svetlanakr2002@mail.ru
Ресей, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovitianova 1, Moscow, 117997

Әдебиет тізімі

  1. Dong J.Y., Fan P.D., Frizzell R.A. // Hum. Gene. Ther. 1996. V. 7. P. 2101–2112. https://doi.org/10.1089/hum.1996.7.17-2101
  2. Nakai H., Yant S.R., Storm T.A., Fuess S., Meuse L., Kay M.A. // J. Virol. 2001. V. 75. P. 6969–6976. https://doi.org/10.1128/JVI.75.15.6969-6976.2001
  3. Srivastava A. // Curr. Opin. Virol. 2016. V. 21. P. 75–80. https://doi.org/10.1016/j.coviro.2016.08.003
  4. Rogers G.L., Martino A.T., Aslanidi G.V., Jayandharan G.R., Srivastava A., Herzog R.W. // Front. Microbiol. 2011. V. 2. P. 194. https://doi.org/10.3389/fmicb.2011.00194
  5. Collins D.E., Reuter J.D., Rush H.G., Villano J.S. // Comp. Med. 2017. V. 67. P. 215–221.
  6. Rose J.A., Berns K.I., Hoggan M.D., Koczot F.J. // Proc. Natl. Acad. Sci. USA. 1969. V. 64. P. 863–869. https://doi.org/10.1073/pnas.64.3.863
  7. Srivastava A., Lusby E.W., Berns K.I. // J. Virol. 1983. V. 45. P. 555–564. https://doi.org/10.1128/jvi.45.2.555-564.1983
  8. Ormö M., Cubitt A.B., Kallio K., Gross L.A., Tsien R.Y., Remington S.J. // Science. 1996. V. 273. P. 1392–1395. https://doi.org/10.1126/science.273.5280.1392
  9. Plamont M.-A., Billon-Denis E., Maurin S., Gauron C., Pimenta F.M., Specht C.G., Shi J., Quérard J., Pan B., Rossignol J., Moncoq K., Morellet N., Volovitch M., Lescop E., Chen Y., Triller A., Vriz S., Le Saux T., Jullien L., Gautier A. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 497–502. https://doi.org/10.1073/pnas.1513094113
  10. Povarova N.V., Zaitseva S.O., Baleeva N.S., Smirnov A.Y., Myasnyanko I.N., Zagudaylova M.B., Bozhanova N.G., Gorbachev D.A., Malyshevskaya K.K., Gavrikov A.S., Mishin A.S., Baranov M.S. // Chemistry. 2019. V. 25. P. 9592–9596. https://doi.org/10.1002/chem.201901151
  11. Myasnyanko I.N., Gavrikov A.S., Zaitseva S.O., Smirnov A.Y., Zaitseva E.R., Sokolov A.I., Malyshevskaya K.K., Baleeva N.S., Mishin A.S., Baranov M.S. // Chemistry. 2021. V. 27. P. 3986–3990. https://doi.org/10.1002/chem.202004760
  12. Li C., Tebo A.G., Thauvin M., Plamont M.-A., Volovitch M., Morin X., Vriz S., Gautier A. // Angew Chem. Int. Ed. Engl. 2020. V. 59. P. 17917–17923. https://doi.org/10.1002/anie.202006576
  13. Chen C., Tachibana S.R., Baleeva N.S., Myasnyanko I.N., Bogdanov A.M., Gavrikov A.S., Mishin A.S., Malyshevskaya K.K., Baranov M.S., Fang C. // Chemistry. 2021. V. 27. P. 8946–8950. https://doi.org/10.1002/chem.202101250
  14. Benaissa H., Ounoughi K., Aujard I., Fischer E., Goïame R., Nguyen J., Tebo A.G., Li C., Le Saux T., Bertolin G., Tramier M., Danglot L., Pietrancosta N., Morin X., Jullien L., Gautier A. // Nat. Commun. 2021. V. 12. P. 6989. https://doi.org/10.1038/s41467-021-27334-0
  15. Emanuel G., Moffitt J.R., Zhuang X. // Nat. Methods. 2017. V. 14. P. 1159–1162. https://doi.org/10.1038/nmeth.4495
  16. Tebo A.G., Moeyaert B., Thauvin M., Carlon-Andres I., Böken D., Volovitch M., Padilla-Parra S., Dedecker P., Vriz S., Gautier A. // Nat. Chem. Biol. 2021. V. 17. P. 30–38. https://doi.org/10.1038/s41589-020-0611-0
  17. Bogdanova Y.A., Solovyev I.D., Baleeva N.S., Myasnyanko I.N., Gorshkova A.A., Gorbachev D.A., Gilvanov A.R., Goncharuk S.A., Goncharuk M.V., Mineev K.S., Arseniev A.S., Bogdanov A.M., Savitsky A.P., Baranov M.S. // Commun. Biol. 2024. V. 7. P. 799. https://doi.org/10.1038/s42003-024-06501-1
  18. El Hajji L., Lam F., Avtodeeva M., Benaissa H., Rampon C., Volovitch M., Vriz S., Gautier A. // Adv. Sci. (Weinh). 2024. V. 11. P. e2404354. https://doi.org/10.1002/advs.202404354
  19. Tebo A.G., Pimenta F.M., Zoumpoulaki M., Kikuti C., Sirkia H., Plamont M.-A., Houdusse A., Gautier A. // ACS Chem. Biol. 2018. V. 13. P. 2392–2397. https://doi.org/10.1021/acschembio.8b00417
  20. Tebo A.G., Gautier A. // Nat. Commun. 2019. V. 10. P. 2822. https://doi.org/10.1038/s41467-019-10855-0
  21. Mineev K.S., Goncharuk S.A., Goncharuk M.V., Povarova N.V., Sokolov A.I., Baleeva N.S., Smirnov A.Y., Myasnyanko I.N., Ruchkin D.A., Bukhdruker S., Remeeva A., Mishin A., Borshchevskiy V., Gordeliy V., Arseniev A.S., Gorbachev D.A., Gavrikov A.S., Mishin A.S., Baranov M.S. // Chem. Sci. 2021. V. 12. P. 6719–6725. https://doi.org/10.1039/d1sc01454d
  22. Baleeva N.S., Bogdanova Y.A., Goncharuk M.V., Sokolov A.I., Myasnyanko I.N., Kublitski V.S., Smirnov A.Y., Gilvanov A.R., Goncharuk S.A., Mineev K.S., Baranov M.S. // Int. J. Mol. Sci. 2024. V. 25. P. 3054. https://doi.org/10.3390/ijms25053054
  23. Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G.R., Wang J., Cong Q., Kinch L.N., Schaeffer R.D., Millán C., Park H., Adams C., Glassman C.R., DeGiovanni A., Pereira J.H., Rodrigues A.V., van Dijk A.A., Ebrecht A.C., Opperman D.J., Sagmeister T., Buhlheller C., PavkovKeller T., Rathinaswamy M.K., Dalwadi U., Yip C.K., Burke J.E., Garcia K.C., Grishin N.V., Adams P.D., Read R.J., Baker D. // Science. 2021. V. 373. P. 871– 876. https://doi.org/10.1126/science.abj8754
  24. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. // Nature. 2021. V. 596. P. 583– 589. https://doi.org/10.1038/s41586-021-03819-2
  25. Engler C., Kandzia R., Marillonnet S. // PLoS One. 2008. V. 3. P. e3647. https://doi.org/10.1371/journal.pone.0003647
  26. Weber E., Engler C., Gruetzner R., Werner S., Marillonnet S. // PLoS One. 2011. V. 6. P. e16765. https://doi.org/10.1371/journal.pone.0016765

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Modeling of the picoFAST protein structure. (a) is a part of the structure of the full–length FAST protein (PDB: 7AVA) corresponding to nanoFAST. The part of the structure corresponding to the C-terminal peptide CFAST11 is highlighted in gray. Here and further, the N-terminal fragment of nanoFAST with F2 (corresponds to F28 in full-size FAST) by S87 (corresponds to S114) is colored in rainbow colors (not gray); we call this fragment picoFAST; (b) and (c) are picoFAST structure models obtained using the Robetta and AlphaFold2 protein structure prediction services accordingly.

Жүктеу (291KB)
3. Fig. 2. Micrographs of living HeLa Kyoto cells expressing the H2B-TagBFP-picoFAST hybrid protein localized in the nucleus before and after addition of the picoFAST-binding fluorogen HBR-DOM2. Imaging was performed in two channels: BFP to confirm the expression of H2B-TagBFP-picoFAST and GFP to detect fluorogen flare after its binding to picoFAST. The micrographs were obtained using a BZ-9000 wide-field fluorescence microscope (Keyence, Japan) equipped with a 60× PlanApo 1.40 NA oil lens (Nikon, USA).

Жүктеу (143KB)
4. 1

Жүктеу (14KB)
5. 2

Жүктеу (13KB)
6. 3

Жүктеу (14KB)
7. 4

Жүктеу (13KB)
8. 5

Жүктеу (14KB)

© Russian Academy of Sciences, 2025