Chemotherapeutic boron-containing homocysteinamides of human serum albumin
- Authors: Wang M.1, Tsyrempilov S.A.1, Moskalev I.A.1, Zakharova O.D.2, Kasatova A.I.3, Silnikov V.N.2, Godovikova T.S.1,2, Popova T.V.1,2
-
Affiliations:
- Novosibirsk State University
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Institute of Nuclear Physics SB RAS
- Issue: Vol 51, No 1 (2025)
- Pages: 119-136
- Section: Articles
- URL: https://kazanmedjournal.ru/0132-3423/article/view/683102
- DOI: https://doi.org/10.31857/S0132342325010113
- EDN: https://elibrary.ru/LYTSFQ
- ID: 683102
Cite item
Abstract
Combination of boron neutron capture therapy and chemotherapy can provide good efficacy in a cancer treatment. Development of therapeutic constructs that combine these two functions, the possibility of in vitro and in vivo visualization and a convenient platform for selective delivery to the tumor is of great relevance today. In this study, we focused on human serum albumin, a well-known drug delivery platform. We developed constructs based on albumin functionalized with boron clusters, analogues of the chemotherapeutic molecule gemcitabine and signaling molecules. To create the constructs, we developed new analogues of homocysteine thiolactone containing closo-dodecaborate or cobalt bis(dicarbollide) and a gemcitabine analogue containing closo-dodecaborate attached to the C5 carbon atom of the nitrogenous base. We have demonstrated that addition of the gemcitabine analogue to the conjugate structure increases its cytotoxicity towards human glioblastoma cell lines. Among the final conjugates, the highest cytotoxicity is demonstrated by the structure containing cobalt bis(dicarbollide). The final structures accumulate well in the cytoplasm of cancer cells. The albumin conjugate containing cobalt bis(dicarbollide) and a boron-containing gemcitabine analogue is capable of accumulating in the nuclei of T98G cell lines. Thus, both final albumin-based constructs showed sufficient efficacy against the human glioma cell line in vitro. We expect that the therapeutic conjugates we have constructed will significantly increase cytotoxicity against cancer cells when irradiated with epithermal neutrons. Combining a chemotherapeutic residue and a boron-containing group in a single construct provides the potential for more effective glioma therapy.
Full Text

About the authors
M. Wang
Novosibirsk State University
Author for correspondence.
Email: io197724@gmail.com
Russian Federation, Novosibirsk
S. A. Tsyrempilov
Novosibirsk State University
Email: io197724@gmail.com
Russian Federation, Novosibirsk
I. A. Moskalev
Novosibirsk State University
Email: io197724@gmail.com
Russian Federation, Novosibirsk
O. D. Zakharova
Institute of Chemical Biology and Fundamental Medicine SB RAS
Email: io197724@gmail.com
Russian Federation, Novosibirsk
A. I. Kasatova
Institute of Nuclear Physics SB RAS
Email: io197724@gmail.com
Russian Federation, Novosibirsk
V. N. Silnikov
Institute of Chemical Biology and Fundamental Medicine SB RAS
Email: io197724@gmail.com
Russian Federation, Novosibirsk
T. S. Godovikova
Novosibirsk State University; Institute of Chemical Biology and Fundamental Medicine SB RAS
Email: io197724@gmail.com
Russian Federation, Novosibirsk; Novosibirsk
T. V. Popova
Novosibirsk State University; Institute of Chemical Biology and Fundamental Medicine SB RAS
Email: io197724@gmail.com
Russian Federation, Novosibirsk; Novosibirsk
References
- Sathornsumetee S., Reardon D.A., Desjardins A., Quinn J.A., Vredenburgh J.J., Rich J.N. // Cancer. 2007. V. 110. P. 13–24. https://doi.org/10.1002/cncr.22741
- Chen R., Smith-Cohn M., Cohen A.L., Colman H. // Neurotherapeutics. 2017. V. 14. P. 284–297. https://doi.org/10.1007/s13311-017-0519-x
- Sweety A., Abhishek C., Sandhya Y., Godhanjali C., Atharva K., Ankesh K. J., Jayant S. G., Rahul P. // Int. Rev. Immunol. 2022. V. 41. P. 582–605. https://doi.org/10.1080/08830185.2022.2101647
- Lan G., Song Q., Luan Y., Cheng Y. // Int. J. Pharm. 2024. V. 650. P. 123747. https://doi.org/10.1016/j.ijpharm.2023.123747
- Lansangan C., Khoobchandani M., Jain R., Rudensky S., Perry C.C., Patil R. // Materials (Basel). 2024. V. 17. P. 1153. https://doi.org/10.3390/ma17051153
- Yu X., Zhu W., Di Y., Gu J., Guo Z., Li H., Fu D., Jin C. // Int. J. Nanomedicine. 2017. V. 12. P. 6771–6785. https://doi.org/10.2147/ijn.s131295
- Guo Z., Wang F., Di Y., Yao L., Yu X., Fu D., Li J., Jin C. // Int. J. Nanomedicine. 2018. V. 13. P. 4869– 4880. https://doi.org/10.2147/ijn.s166769
- Matsushita K., Okuda T., Mori S., Konno, M., Eguchi H., Asai A., Koseki J., Iwagami Y., Yamada D., Akita H., Asaoka T., Noda T., Kawamoto K., Gotoh K., Kobayashi S., Kasahara Y., Morihiro K., Satoh T., Doki Y., Mori M., Ishii H., Obika S.A. // ChemMedChem. 2019. V. 14. P. 1384–1391. https://doi.org/10.1002/cmdc.201900324
- Xu Y., Huang Y., Lu W., Liu S., Xiao Y., Yu J. // Eur. J. Pharm. Biopharm. 2019. V. 144. P. 193–206. https://doi.org/10.1016/j.ejpb.2019.09.019
- Samaniego L.C., Martínez J.H., Acebedo S.L., Spagnuolo C.C. // Bioorg. Chem. 2019. V. 90. P. 103059. https://doi.org/10.1016/j.bioorg.2019.103059
- Evens A.M., Rosen S.T., Helenowski I., Kline J., Larsen A., Colvin J., Winter J.N., van Besien K.M., Gordon L.I., Smith S.M. // Br. J. Haematol. 2013. V. 163. P. 55–61. https://doi.org/10.1111/bjh.12488
- Pandit B., Royzen M. // Genes (Basel). 2022. V. 13. P. 466. https://doi.org/10.3390/genes13030466
- Paroha S., Verma J., Dubey R.D., Dewangan R.P., Molugulu N., Bapat R.A., Sahoo P.K., Kesharwani P. // Int. J. Pharm. 2021. V. 592. P. 120043. https://doi.org/10.1016/j.ijpharm.2020.120043
- Elzoghby A.O., Samy W.M., Elgindy S.N. // J. Control. Release. 2012. V. 157. P. 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
- Cho H., Jeon S.I., Ahn C-H., Shim M.K., Kim K. // Pharmaceutics. 2022. V. 14. P. 728. https://doi.org/10.3390/pharmaceutics14040728
- Li C., Zhang D., Pan Y., Chen B. // Polymers. (Basel). 2023. V. 15. P. 3354. https://doi.org/10.3390/polym15163354
- Tao H.Y., Wang R.Q., Sheng W.J., Zhen Y.S. // Int. J. Biol. Macromol. 2021. V. 187. P. 24–34. https://doi.org/10.1016/j.ijbiomac.2021.07.080
- Yu X., Ruan M., Wang Y., Nguyen A., Xiao W., Ajena Y., Solano L.N., Liu R., Lam K.S. // Bioconjug. Chem. 2022. V. 33. P. 2332–2340. https://doi.org/10.1021/acs.bioconjchem.2c00361
- Ma T., Jiang J.L., Qi W.X., Chen J.Y., Xu H.P. // Drug. Des. Devel. Ther. 2022. V. 16. P. 2395–2406. https://doi.org/10.2147/dddt.s366558
- Kong L., Du J., Gu J., Deng J., Guo Y., Tao B., Jin C., Fu D., Li J. // Front. Surg. 2022. V. 9. P. 890412. https://doi.org/10.3389/fsurg.2022.890412
- Wang X., Liang Y., Fei S., He H., Zhang Y., Yin T., Tang X. // AAPS PharmSciTech. 2018. V. 19. P. 812– 819. https://doi.org/10.1208/s12249-017-0888-9
- Norouzi P., Amini M., Mottaghitalab F., Mirzazadeh Tekie F.S., Dinarvand R., Mirzaie Z.H., Atyabi F. // Chem. Biol. Drug. Des. 2020. V. 96. P. 745–757. https://doi.org/10.1111/cbdd.13044
- Han H., Wang J., Chen T., Yin L., Jin Q., Ji J. // J. Colloid. Interface Sci. 2017. V. 507. P. 217–224. https://doi.org/10.1016/j.jcis.2017.07.047
- Raskolupova V.I., Wang M., Dymova M.A., Petrov G.O., Shchudlo I.M., Taskaev S.Y., Abramova T.V., Godovikova T.S., Silnikov V.N., Popova T.V. // Molecules. 2023. V. 28. P. 2672. https://doi.org/10.3390/molecules28062672
- Rak J., Kaplánek R., Král V. // Bioorg. Med. Chem. Lett. 2010. V. 20. P. 1045–1048. https://doi.org/10.1016/j.bmcl.2009.12.038
- Rak J., Jakubek M., Kaplánek R., Matějíček P., Král V. // Eur. J. Med. Chem. 2011. V. 46. P. 1140–1146. https://doi.org/10.1016/j.ejmech.2011.01.032
- Goszczyński T.M., Fink K., Kowalski K., Leśnikowski Z.J., Boratyński J. // Sci. Rep. 2017. V. 7. P. 9800. https://doi.org/10.1038/s41598-017-10314-0
- Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. // J. Control. Release. 2016. V. 237. P. 160–167. https://doi.org/10.1016/j.jconrel.2016.07.017
- Ishii S., Sato S., Asami H., Hasegawa T., Kohno J., Nakamura H. // Org. Biomol. Chem. 2019. V. 17. P. 5496–5499. https://doi.org/10.1039/c9ob00584f
- Nakamura H., Kikuchi S., Kaway K., Ishii S., Sato S. // Pure Appl. Chem. 2018. V. 90. P. 745–753. https://doi.org/10.1515/pac-2017-1104
- Sato S., Ishii H., Nakamura H. // Eur. J. Inorg. Chem. 2017. V. 2017. P. 4345. https://doi.org/10.1002/ejic.201701118
- Popova T.V., Dymova M.A., Koroleva L.S., Zakharova O.D., Lisitskiy V.A., Raskolupova V.I., Sycheva T.V., Taskaev S.Yu., Silnikov V.N., Godovikova T.S. // Molecules. 2021. V. 26. P. 6537. https://doi.org/10.3390/molecules26216537
- Wang M., Moskalev I.A., Zakharova O.D., Kasatova A.I., Silnikov V.N., Popova T.V., Godovikova T.S. // J. Biol. Today’s World. 2024. V. 13. P. 001–007. https://doi.org/10.35248/2322-3308-13.1.001
- Lisitskiy V.A., Khan H., Popova T.V., Chubarov A.S., Zakharova O.D., Akulov A.E., Shevelev O.B., Zavjalov E.L., Kop-tyug I.V., Moshkin M.P., Silnikov V.N., Ahmad S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3925–3930. https://doi.org/10.1016/j.bmcl.2017.05.084
- Raskolupova V.I., Popova T.V., Zakharova O.D., Nikotina A.E., Abramova T.V., Silnikov V.N. // Molecules. 2021. V. 26. P. 2679. https://doi.org/10.3390/molecules26092679
- Popova T.V., Pyshnaya I.A., Zakharova O.D., Akulov A.E., Shevelev O.B., Poletaeva J., Zavjalov E.L., Silnikov V.N., Ryabchikova E.I., Godovikova T.S. // Biomedicines. 2021. V. 9. P. 74. https://doi.org/10.3390/biomedicines9010074
- Popova T.V., Krumkacheva O.A., Burmakova A.S., Spitsyna A.S., Zakharova O.D., Lisitskiy V.A., Kirilyuk I.A., Silnikov V.N., Bowman M.K., Bagryanskaya E.G., Godovikova T.S. // RSC Med. Chem. 2020. V. 11. P. 1314–1325. https://doi.org/10.1039/c9md00516a
- Popova T.V., Khan H., Chubarov A.S., Lisitskiy V.A., Antonova N.M., Akulov A.E., Shevelev, O.B., Zavjalov, E.L., Silnikov, V.N., Ahmad, S., Godovikova T.S. // Bioorg. Med. Chem. Lett. 2018. V. 28. P. 260–264. https://doi.org/10.1016/j.bmcl.2017.12.061
- Chubarov A.S., Zakharova O.D., Koval O.A., Romaschenko A.V., Akulov A.E., Zavjalov E.L., Razumov I.A., Koptyug I.V., Knorre D.G., Godovikova T.S.// Bioorg. Med. Chem. 2015. V. 23. 6943–6954. https://doi.org/10.1016/j.bmc.2015.09.043
- Miyamura S., Imafuku T., Anraku M., Taguchi K., Yamasaki K., Tominaga Y., Maeda H., Ishima Y., Watanabe H., Otagiri M., Maruyama T. // J. Pharm. Sci. 2016. V. 105. P. 1043–1049. https://doi.org/10.1016/j.xphs.2015.12.015
- Ma Q., Long W., Xing C., Chu J., Luo M., Wang H.Y., Liu Q., Wang R.F. // Front. Immunol. 2018. V. 9. P. 2924. https://doi.org/10.3389/fimmu.2018.02924
- Hu H., Ng T.S.C., Kang M., Scott E., Li R., Quintana J.M., Matvey D., Vantaku V.R., Weissleder R., Parangi S., Miller M.A. // Clin. Cancer. Res. 2023. V. 29. P. 3457–3470. https://doi.org/10.1158/1078-0432.ccr-22-2976
- Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. // J. Control. Release. 2000. V. 65. P. 271–284. https://doi.org/10.1016/s0168-3659(99)00248-5
- Park C.R., Jo J.H., Song M.G., Park J.Y., Kim Y.H., Youn H., Paek S.H., Chung J.K., Jeong J.M., Lee Y.S., Kang K.W. // Theranostics. 2019. V. 9. P. 7447–7457. https://doi.org/10.7150/thno.34883
- Zhao P., Wang Y., Wu A., Rao Y., Huang Y. // ChemBioChem. 2018. V. 19. P. 1796–1805. https://doi.org/10.1002/cbic.201800201
- Cui T., Corrales-Guerrero S., Castro-Aceituno V., Nair S., Maneval D.C., Monnig C., Kearney P., Ellis S., Raheja N., Raheja N., Williams T.M. // Mol. Ther. Oncolytics. 2023. V. 18. P. 181–192. https://doi.org/10.1016/j.omto.2023.08.008
- Peters R.A. // Mechanism of the toxicity of the active constituent of dichapetalum cymosum and related compounds. In: Advances in Enzymology / Eds. Nord F.F. Geneva: Interscience Publishers Inc., 1957. P. 113–159.
- Cleveland D.W., Fischer S.G., Kirschner M.W., Laemmli U.K. // J. Biol. Chem. 1977. V. 252. P. 1102– 1106.
- Mosmann T. // J. Immunol. Methods. 1983. V. 65. P. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Supplementary files
