SYNTHESIS AND THERMODYNAMIC INVESTIGATIONS OF COMPOUND ON THE BASIS OF BISMUTH AND ITTERBIUM OXIDES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the paper, compound with composition Bi1.3Yb0.7O3 was prepared by solid state reactions. It was shown that compound had cubic structure, space group Fm3m, lattice parameter a = 0.54202 nm. The dissolution enthalpy of compound Bi1.3Yb0.7O3 was measured by solution calorimetry in 2 M HCl and was ∆solH0 = −227.8 ± 6.3 kJ mol1. Based on measured enthalpy of dissolution, the standard formation enthalpy of Bi1.3Yb0.7O3 was calculated as following value: ∆fH0 = −996.0 ± 7.9 kJ mol 1. Using Born-Haber cycle, the lattice enthalpy for Bi1.3Yb0.7O3 was calculated: ∆latH0 = −13278 kJ mol1.

作者简介

N. Matskevich

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

E. Elbaev

Nikolaev Institute of Inorganic Chemistry SB RAS; Novosibirsk State Technical University

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia; Karl Marks Avenue, 20, Novosibirsk, 630073 Russia

A. Semerikova

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

A. Manakov

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

L. Levchenko

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

A. Shapovalova

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

V. Zaitsev

Siberian State University of Water Transport

Email: nata.matskevich@yandex.ru
Shchetinkina Avenue, 33, Novosibirsk, 630033 Russia

E. Tkachev

Nikolaev Institute of Inorganic Chemistry SB RAS

编辑信件的主要联系方式.
Email: nata.matskevich@yandex.ru
Lavrentiev Avenue, 3, Novosibirsk, 630090 Russia

参考

  1. Kaimieva O.S., Mikhailovskaya Z.A., Buyanova E.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 386. https://doi.org/10.1134/S0036023623600235
  2. Tran T.B., Navrotsky A. // Chem. Mater. 2012. V. 24. P. 4185. https://doi.org/10.1021/cm302446e
  3. Vlasenko V., Nowagiel M., Wasiucionek M. et al. // Materials. 2024. V. 17. № 16. P. 4023. https://doi.org/10.3390/ma17164023
  4. Tian Y., Ma M., Ma X. et al. // Mater. Chem. Phys. 2024. V. 328. P. 129965. https://doi.org/10.1016/j.matchemphys.2024.129965
  5. Grishchenko D.N., Medkov M.A. // Russ. J. Inorg. Chem. 2024. V.69. P. 1338. https://doi.org/10.1134/S003602362460179X
  6. Tran T.B., Navrotsky A. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 2331. https://doi.org/10.1039/c3cp54553a
  7. Gao Y., Zhong M., Chen J. et al. // Mater. Adv. 2023. V. 4. № 13. P. 2839. https://doi.org/10.1039/d3ma00034f
  8. Punn R., Feteira A.M., Sinclair D.C. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15386. https://doi.org/10.1021/ja065961d
  9. Xiang Z., Dong H., Liu T. et al. // J. North Univer. China. 2022. V. 43. № 4. P. 341. https://doi.org/10.3969/j.issn.1673-3193.2022.04.008
  10. Shen M., Ai F., Ma H. et al. // iScience. 2021. V. 24. № 12. P. 103464. https://doi.org/10.1016/j.isci.2021.103464
  11. Payveren M.A., Balci M., Saatci B. et al. // Appl. Phys. A. 2024. V. 130. P. 681. https://doi.org/10.1007/s00339-024-07837-5
  12. Kaloyanov N., Zahariev A., Parvanova V. et al. // Indian J. Chem. 2023. V. 62. № 5. P. 431. https://doi.org/10.56042/ijc.v62i5.1434
  13. Shang F., Li Q., Shi Y. et al. // J. Functional Mater. 2021. V. 52. № 6. P. 06076. https://doi.org/10.3969/j.issn.1001-9731.2021.06.010
  14. Gao Y., Huang L., Li Q. et al. // Int. J. Hydrogen Energy. 2024. V. 50. P. 1329. https://doi.org/10.1016/j.ijhydene.2023.10.269
  15. Matskevich N.I., Kochelakov D.V., Samoshkin D.A. et al. // Mendeleev Commun. 2024. V. 34. P. 905. http://dx.doi.org/10.1016/j.mencom.2024.10.043
  16. Matskevich N.I., Grigorieva V.D., Semerikova A.N. et al. // Mendeleev Commun. 2023. V. 33. P. 522. http://dx.doi.org/10.1016/j.mencom.2023.06.026
  17. Matskevich N.I., Semerikova A.N., Samoshkin D.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68 (11). P. 1632. http://dx.doi.org/10.1134/S0036023623602179
  18. Matskevich N.I., Semerikova A.N., Grigor’eva V.D. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. P. 32. http://dx.doi.org/10.1134/s0036024424010151
  19. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467–481.
  20. Gunther C., Pfestorf R., Rother M. et al. // J. Therm. Anal. Calorim. 1988. V. 33. P. 359. https://doi.org/10.1007/BF01914624
  21. Termicheskie konstanty veshchestv (Thermal Constants of Substances) / Еd. Glushko V.P. M.: VINITI, 1965–1982, V. 1–10.
  22. Matskevich N.I., Semerikova A.N., Samoshkin D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1825. http://dx.doi.org/10.1134/S0036023622600988
  23. Matskevich N.I., Semerikova A.N., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 229. https://doi.org/10.1134/S0036023622700140
  24. Elbaev E.R., Matskevich N.I., Luk’yanova S.A. et al. // Russ. J. Phys. Chem. 2024. V. 98. P. 1941. http://dx.doi.org/10.1134/S003602442470105X
  25. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751. https://dx.doi.org/10.1107/S0567739476001551

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025