Phase equilibria in the Y2O3–SnO2 system
- 作者: Ryumin M.A.1, Nikiforova G.E.1, Kondakov D.F.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of RAS
- 期: 卷 70, 编号 5 (2025)
- 页面: 708-714
- 栏目: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/685497
- DOI: https://doi.org/10.31857/S0044457X25050106
- EDN: https://elibrary.ru/HYOVUJ
- ID: 685497
如何引用文章
详细
A series of samples in the Y2O3–SnO2 system with different ratios of yttrium and tin oxides were obtained by solid-phase synthesis. The phase composition of the obtained samples was controlled by X-ray phase analysis. The obtained diffraction patterns were processed and the crystallographic parameters were calculated by full-profile analysis. The conducted study of phase equilibria in the Y2O3–SnO2 system at a temperature of 1400°C made it possible to determine for the first time the homogeneity region of yttrium stannate Y2Sn2O7, which is shifted towards yttrium oxide and is 33.3–36 mol. % Y2O3. The existence of a solid solution based on cubic yttrium oxide, extending to 3 mol. % SnO2, was established. A comparative analysis of the effect of the radius of the substituting tetravalent cation on the width of the homogeneity region of the solid solution based on yttrium oxide was carried out. The absence of solubility of yttrium oxide in tin dioxide was noted.
全文:

作者简介
M. Ryumin
Kurnakov Institute of General and Inorganic Chemistry of RAS
编辑信件的主要联系方式.
Email: ryumin@igic.ras.ru
俄罗斯联邦, Leninsky pr., 31, Moscow
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of RAS
Email: ryumin@igic.ras.ru
俄罗斯联邦, Leninsky pr., 31, Moscow
D. Kondakov
Kurnakov Institute of General and Inorganic Chemistry of RAS
Email: ryumin@igic.ras.ru
俄罗斯联邦, Leninsky pr., 31, Moscow
参考
- Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem., 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Kennedy B.J., Hunter B.A. Howard Ch.J. // J. Solid State Chem. 1997. V. 130. № 1. P. 58. https://doi.org/10.1006/jssc.1997.7277
- Jitta R.R., Gundeboina R., Veldurthi N.K. et al. // J. Chem. Technol. Biotechnol. 2015. V. 90. № 11. P. 1937. https://doi.org/10.1002/jctb.4745
- Mallat T., Baiker A. // Chem. Rev. 2004. V.104. № 6. P. 3037. https://doi.org/10.1021/cr0200116
- Mims C.A., Jacobson A.J., Hall R.B., Lewandowski J.T. // J. Catal. 1995. V. 153 № 2. P. 197. https://doi.org/10.1006/jcat.1995.1122
- Borges F.H., Martins J.C., Caixeta F.J. et. al. // J. Sol-Gel Sci. Technol. 2022. V. 102. P. 249. https://doi.org/10.1007/s10971-021-05673-0
- Xu J., Xi R., Xu X. et al. // J. Rare Earths. 2020. Vol. 38. № 8. P. 840–849 https://doi.org/10.1016/j.jre.2020.01.002
- Fukina D.G., Belousov A.S., Suleimanov E.V. Pyrochlore Oxides: Structure, Properties, and Potential in Photocatalytic Applications / Switzerland: Springer Cham, 2024. https://doi.org/10.1007/978-3-031-46764-6
- Ishida S., Ren F., Takeuchi N. // J. Am. Ceram. Soc. 1993. V. 76. № 10. P. 2644. https://doi.org/10.1111/j.1151-2916.1993.tb03993.x
- Lang M., Zhang F., Zhang J. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. № 19. P. 2951. https://doi.org/10.1016/j.nimb.2010.05.016
- Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. № 11. P. 5949. http://dx.doi.org/10.1063/1.1707213
- Wang Y., Jing C., Ding Z.-Y. et al. // Crystals. 2023. V.13. № 1. P. 143. https://doi.org/10.3390/cryst13010143
- Kar T., Choudhary R.N.P. // Mater. Sci. Eng., B. 2002. V. 90. № 3. P. 224. https://doi.org/10.1016/S0921-5107(01)00745-0
- Liu Z.G., Ouyang J.H., Sun K.N. // Fuel Cells. 2011. V. 11. № 2. P. 153. https://doi.org/10.1002/fuce.201000184
- Yu T.-H., Tuller H.L. // Solid State Ionics. 1996. V. 86–88 P. 177. https://doi.org/10.1016/0167-2738(96)00118-X
- Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462. https://doi.org/10.31857/S0044457X23600974
- Heward W.J., Swenson D.J. // J. Mater. Sci. 2007. V. 42. P. 7135. https://doi.org/10.1007/s10853-007-1569-y
- Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А., Денисов В.М. // Неорг. матер. 2015. Т. 51. № 7. С. 714. https://doi.org/10.7868/S0002337X15070040
- Асрян Н.А., Кольцова Т.Н., Алиханян А.С., Нипан Г.Д. // Журн. физ. химии. 2003. Т. 77. № 11. С. 1938.
- Li X., Cai Y.Q., Cui Q. et al. // Phys. Rev. B. 2016. V. 94. № 21. P. 214429. https://doi.org/10.1103/PhysRevB.94.214429
- Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты / М.: Наука, 1984.
- Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
- Liu C.G., Zhang J., Chen L.J. et al. // Int. J. Mod. Phys. B. 2017.V. 31. № 26. P. 1750184. https://doi.org/10.1142/S0217979217501843
- Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
- Чернышев В.А. // Физика тв. тела. 2021. Т. 63. № 7. С. 952. https://doi.org/10.21883/FTT.2021.07.51049.027
- Sun B.J., Liu Q.L., Liang J.M. et al. // Acta Phys. Sin. 2007. V. 56. № 12. P. 7147. https://doi.org/10.7498/aps.56.7147
- Sun B.J., Liu Q.L., Liang J.K. et al. // J. Alloys Compd. 2008. V. 455. P. 265. https://doi.org/10.1016/j.jallcom.2007.01.046
- Tammanoon N., Wisitsoraat A., Phokharatkul D. et al. // Sens. Actuators, B. 2018. V. 262. P. 245 https://doi.org/10.1016/j.snb.2018.01.238
- Li. Zh., Yang Q., Wu Y. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 16. P. 8659. https://doi.org/10.1016/j.ijhydene.2019.02.050
- Hsu Kuo-Chin, Fang Te-Hua, Hsiao Yu-Jen, Chan Ching-An. // Mater. Lett. 2020. V. 261. P. 127144. https://doi.org/10.1016/j.matlet.2019.127144
- Gaponov A.V. // Physica B. 2022. V. 639. Art. 414010. https://doi.org/10.1016/j.physb.2022.414010
- Parra R., Maniette Y., Varela J.A., Castro M.S. // Mater. Chem. Phys. 2005. V. 94 № 2-3. P. 347. https://doi.org/10.1016/j.matchemphys.2005.05.014
- Baur W.H., Khan A.A. // Acta Crystallogr. Sect. B. 1971. V. 27. № 11. P. 2133. https://doi.org/10.1107/S0567740871005466
- Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- https://materials.springer.com/isp/phase-diagram/docs/c_0210439
- Nayak C., Nigam S., Pandey M. et al. // Chem. Phys. Lett. 2014. V. 597. P. 51. https://doi.org/10.1016/j.cplett.2014.02.028
- Baldinozzi G., Berar J.-F., Calvarin G. // Mater. Sci. Forum. 1998. V. 278. P. 680. https://doi.org/10.4028/www.scientific.net/MSF.278-281.680
- Pascual C., Duran P. // J. Am. Ceram. Soc. 1983. V. 66. № 1. P. 23. https://doi.org/10.1111/j.1151-2916.1983.tb09961.x
- Feighery A.J., Irvine J.T.S., Fagg D.P., Kaiser A. // J. Solid State Chem. 1999. V. 143. № 2. P. 273. https://doi.org/10.1006/jssc.1998.8108
补充文件
