Crystallization at "Soft" Chemistry Conditions of New Inorganic Fluoride Nanomaterials and Their Application Prospects
- 作者: Gulina L.B.1, Tolstoy V.P.1, Murin I.V.1
-
隶属关系:
- Saint Petersburg State University
- 期: 卷 69, 编号 3 (2024)
- 页面: 272-285
- 栏目: SOLID STATE CHEMISTRY IN MODERN MATERIALS SCIENCE
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666592
- DOI: https://doi.org/10.31857/S0044457X24030027
- EDN: https://elibrary.ru/YFLWUY
- ID: 666592
如何引用文章
详细
Peculiarities of formation and growth of crystals of metal fluorides MF2 (where M — Ca, Sr, Pb) and MF3 (where M — Sc, La, Ln) as a result of interaction between components of an aqueous solution of metal salt and gaseous hydrogen fluoride at planar interface at room temperature are considered. Compounds with different crystal structures: PbF2 (pr. gr. Pnma, Fm3m), ScF3 (pr. gr. Pm3m, P6/mmm), LaF3 (pr. gr. P3c1) were chosen as model objects. The factors that have a significant influence on the morphology, size, and ordering of the formed crystals have been determined. The possibility of synthesis of 1D and 2D crystals is shown for some compounds. Probable fields of application of nanomaterials based on synthesized compounds are analyzed. The conclusion is made about the possibility of the interface technique developing for the design of new solid electrolytes, optically active materials, and functional coatings.
全文:

作者简介
L. Gulina
Saint Petersburg State University
编辑信件的主要联系方式.
Email: l.gulina@spbu.ru
俄罗斯联邦, Saint Petersburg
V. Tolstoy
Saint Petersburg State University
Email: l.gulina@spbu.ru
俄罗斯联邦, Saint Petersburg
I. Murin
Saint Petersburg State University
Email: l.gulina@spbu.ru
俄罗斯联邦, Saint Petersburg
参考
- Gránásy L., Pusztai T., Börzsönyi T. et al. // Nat. Mater. 2004. V. 3. № 9. P. 645. https://doi.org/10.1038/nmat1190
- Linnikov O.D. // Russ. Chem. Rev. 2014. V. 83. № 4. P. 343. https://doi.org/10.1070/RC2014v083n04ABEH004399
- Ivanov V.K., Fedorov P.P., Baranchikov A. et al. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1204. https://doi.org/10.1070/RCR4453
- Lv W., Huo W., Niu Y. et al. // CrystEngComm. 2015. V. 17. № 4. P. 729. https://doi.org/10.1039/c4ce01640h
- Zhou W. // Crystals. 2019. V. 9. № 1. P. 7. https://doi.org/10.3390/cryst9010007
- Kim H.J., Kim J.H., Jeong J.S. et al. // Nano Letters. 2022. V. 22. № 8. P. 3252. https://doi.org/10.1021/acs.nanolett.1c04966
- Han T., Choi Y., Kwon J.T. et al. // Langmuir. 2020. V. 36. № 33. P. 9843. https://doi.org/10.1021/acs.langmuir.0c01468
- Khodaparast S., Marcos J., Sharratt W.N. et al. // Langmuir. 2021. V. 37. № 1. P. 230. https://doi.org/10.1021/acs.langmuir.0c02821
- Pikin S.A. // Phys. A. Stat. Mech. Appl. 1992. V. 191. № 1–4. P. 139. https://doi.org/10.1016/0378-4371(92)90518-U
- Buchinskaya I., Fedorov P. // Russ. Chem. Rev. 2004. V. 73. P. 404. https://doi.org/10.1070/RC2004v073n04ABEH000811
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела: в 2 т., т. 2. СПб.: Изд-во С.-Петерб. ун-та, 2010. 1000 с.
- Trnovcová V., Fedorov P.P., Furár I. // J. Rare Earths. 2008. V. 26. № 2. P. 225. https://doi.org/10.1016/S1002-0721(08)60070-8
- Trnovcová V., Fedorov P.P., Furár I. // Russ. J. Electrochem. 2009. V. 45. № 6. P. 630. https://doi.org/10.1134/S1023193509060020
- Trnovcová V., Fedorov P.P., Buchinskaya I.I. et al. // Solid State Ionics. 1999. V. 119. № 1–4. P. 181. https://doi.org/10.1016/S0167-2738(98)00501-3
- Sorokin N.I., Fedorov P.P., Sobolev B.P. // Inorg. Mater. 1997. V. 33. № 1. P. 1.
- Hu L., Chen J., Fan L. et al. // J. Am. Ceram. Soc. 2014. V. 97. № 4. P. 1009. https://doi.org/10.1111/jace.12855
- Александров А.А., Брагина А.Г., Сорокин Н.И. и др. // Неорган. материалы. 2023. Т. 59. № 3. С. 306. https://doi.org/10.31857/S0002337X23030016
- Fedorov P.P., Alexandrov A.A. // J. Fluorine Chem. 2019. V. 227. P. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374
- Glazunova T., Boltalin A., Fedorov P. // Russ. J. Inorg. Chem. 2006. V. 51. P. 983. https://doi.org/10.1134/S0036023606070011
- Liu G., Zhou Z., Fei F. et al. // Phys. B (Amsterdam, Neth.). 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
- Han L., Wang Y., Guo L. et al. // Nanoscale. 2014. V. 6. № 11. P. 5907. https://doi.org/10.1039/C4NR00512K
- Schmidt L., Emmerling F., Kirmse H. et al. // RSC Adv. 2014. V. 4. № 1. P. 32. https://doi.org/10.1039/C3RA43769H
- Fujihara S., Kadota Y., Kimura T. // J. Sol-Gel Sci. Technol. 2002. V. 24. № 2. P. 147. https://doi.org/10.1023/A:1015252010509
- Heise M., Scholz G., Kemnitz E. // Solid State Sci. 2017. V. 72. P. 41. https://doi.org/10.1016/j.solidstatesciences.2017.08.010
- Heise M., Scholz G., Duevel A. et al. // Solid State Sci. 2018. V. 77. P. 45. https://doi.org/10.1016/j.solidstatesciences.2018.01.007
- Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. № 11. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
- Zheng Y., Zhang Y., Wu J. et al. // Displays. 2014. V. 35. № 5. P. 273. https://doi.org/10.1016/j.displa.2014.10.002
- Han Y., Zhang Q., Fang S. et al. // Adv. Mater. Res. 2011. V. 335–336. P. 172. https://doi.org/10.4028/www.scientific.net/AMR.335-336.172
- Kuznetsov S.V., Osiko V.V., Tkatchenko E.A. et al. // Russ. Chem. Rev. 2006. V. 75. № 12. P. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
- Abiev R.S., Zdravkov A.V., Kudryashova Y.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 7. P. 1047. https://doi.org/10.1134/S0036023621070020
- Fedorov P.P., Luginina A.A., Tabachkova N.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1211. https://doi.org/10.1134/S0036023622080101
- Fedorov P.P., Kuznetsov S.V., Mayakova M.N. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1525. https://doi.org/10.1134/S003602361110007X
- Mayakova M.N., Kuznetsov S.V., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 7. P. 773. https://doi.org/10.1134/S003602361407016X
- Patle A., Patil R.R., Moharil S.V. // AIP Conf. Proc. 2016. V. 1728. № 1. P. 020353. https://doi.org/10.1063/1.4946404
- Zhou Z., Li W., Song J. et al. // Ceram. Int. 2018. V. 44. № 4. P. 4344. https://doi.org/10.1016/j.ceramint.2017.12.028
- Kuznetsov S.V., Kozlova A.N., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 293. https://doi.org/10.1134/S0036023618030130
- Fedorov P.P., Mayakova M.N., Kuznetsov S.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. P. 1173. https://doi.org/10.1134/S0036023617090078
- Luginina A.A., Fedorov P.P., Kuznetsov S.V. et al. // Inorg. Mater. 2012. V. 48. № 5. P. 531. https://doi.org/10.1134/S002016851205010X
- Yasyrkina D.S., Kuznetsov S.V., Alexandrov A.A. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. № 4. P. 505. https://doi.org/10.17586/2220-8054-2021-12-4-505-511
- Kuznetsov S.V., Nizamutdinov A.S., Proydakova V.Y. et al. // Inorg. Mater. 2019. V. 55. № 10. P. 1031. https://doi.org/10.1134/S002016851910008X
- Fedorov P.P., Luginina A.A., Ermakova J.A. et al. // J. Fluorine Chem. 2017. V. 194. P. 8. https://doi.org/10.1016/j.jfluchem.2016.12.003
- Бучинская И.И., Сорокин Н.И. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 877. https://doi.org/10.31857/S0044457X23600044
- Kuznetsov S.V., Ovsyannikova A.A., Tupitsyna E.A. et al. // J. Fluorine Chem. 2014. V. 161. P. 95. https://doi.org/10.1016/j.jfluchem.2014.02.011
- Gulina L.B., Weigler M., Privalov A.F. et al. // Solid State Ionics. 2020. V. 352. P. 115354. https://doi.org/10.1016/j.ssi.2020.115354
- Fedorov P.P., Osiko V.V., Kuznetsov S.V. et al. // J. Cryst. Growth. 2014. V. 401. P. 63. https://doi.org/10.1016/j.jcrysgro.2013.12.069
- Tolstoi V.P., Gulina L.B. // Russ. J. Gen. Chem. 2013. V. 83. № 9. P. 1635. https://doi.org/10.1134/S1070363213090016
- Tolstoy V.P., Gulina L.B. // J. Nano- Electron. Phys. 2013. V. 5. № 1. P. 01003.
- Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
- Гулина Л.Б. Синтез твердофазных соединений и наноматериалов с участием химических реакций на границе раздела раствор–газ. Автореф. дис. ... д.х.н.: 1.4.15. СПб, 2022. 38 c.
- Forsyth J.B., Wilson C.C., Sabine T.M. // Acta Crystallogr., Sect. A. 1989. V. 45. № 3. P. 244. https://doi.org/10.1107/S0108767388011353
- Achary S.N., Tyagi A.K. // Powder Diffr. 2005. V. 20. № 3. P. 254. https://doi.org/10.1154/1.1948391
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // CrystEngComm. 2017. V. 19. № 36. P. 5412. https://doi.org/10.1039/C7CE01396E
- Fedorov P.P., Trnovcova V., Kocherba G.I. et al. // Kristallografiya. 1995. V. 40. № 4. P. 716.
- Kasatkin I.A., Gulina L.B., Platonova N.V. et al. // CrystEngComm. 2018. V. 20. № 20. P. 2768. https://doi.org/10.1039/C8CE00257F
- Gulina L.B., Tolstoy V.P., Petrov Y.V. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 9779. https://doi.org/10.1021/acs.inorgchem.8b01375
- Yu L., Zhang G., Li S. et al. // J. Cryst. Growth. 2007. V. 299. № 1. P. 184. https://doi.org/10.1016/j.jcrysgro.2006.10.237
- Gulina L.B., Tolstoy V.P. // Russ. J. Gen. Chem. 2014. V. 84. № 8. P. 1472. https://doi.org/10.1134/S1070363214080039
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2015. V. 180. P. 117. https://doi.org/10.1016/j.jfluchem.2015.09.002
- Gulina L.B., Schikora M., Privalov A.F. et al. // Appl. Magn. Reson. 2019. V. 50. № 4. P. 579. https://doi.org/10.1007/s00723-018-1077-z
- Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2017. V. 200. P. 18. https://doi.org/10.1016/j.jfluchem.2017.05.006
- Cheetham A.K., Fender B.E.F., Fuess H. et al. // Acta Crystallogr., Sect. B. 1976. V. 32. № 1. P. 94. https://doi.org/10.1107/S0567740876002380
- Fan F.-R., Ding Y., Liu D.-Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 34. P. 12036. https://doi.org/10.1021/ja9036324
- Yoo S., Sen R., Simon Z.C. et al. // Chem. Mater. 2023. V. 35. № 16. P. 6274. https://doi.org/10.1021/acs.chemmater.3c00798
- Wen X., Nazemi S.A., da Silva R.R. et al. // Langmuir. 2023. V. 39. № 32. P. 11268. https://doi.org/10.1021/acs.langmuir.3c00799
- Yuan H., Wang Y., Yang C. et al. // ChemPhysChem. 2019. V. 20. № 22. P. 2964. https://doi.org/10.1002/cphc.201900524
- Amano O., Sasahira A., Kani Y. et al. // J. Nucl. Sci. Technol. 2004. V. 41. № 1. P. 55. https://doi.org/10.1080/18811248.2004.9715457
- Smirnov P.R., Grechin O.V., Vashurin A.S. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 382. https://doi.org/10.1134/S0036023622030111
- Zhang H., Banfield J.F. // CrystEngComm. 2014. V. 16. № 8. P. 1568. https://doi.org/10.1039/c3ce41929k
- Zhang J., Huang F., Lin Z. // Nanoscale. 2010. V. 2. № 1. P. 18. https://doi.org/10.1039/b9nr00047j
- Popov P.A., Sidorov А.А., Kul’chenkov Е.А. et al. // Ionics. 2016. V. 23. № 1. P. 233. https://doi.org/10.1007/s11581-016-1802-2
- Takami T., Pattanathummasid C., Kutana A. et al. // J. Phys.: Condens. Matter. 2023. V. 35. P. 29. https://doi.org/10.1088/1361-648X/accb32
- Kühn H.J., Duparré A., Richter W. et al. // Thin Solid Films. 1991. V. 201. № 2. P. 281. https://doi.org/10.1016/0040-6090(91)90117-G
- Zhu G., Liu P., Hojamberdiev M. et al. // J. Mater. Sci. 2010. V. 45. № 7. P. 1846. https://doi.org/10.1007/s10853-009-4168-2
- Wang G., Peng Q., Li Y. // J. Am. Chem. Soc. 2009. V. 131. № 40. P. 14200. https://doi.org/10.1021/ja906732y
- Lyapin A.A., Ryabochkina P.A., Chabushkin A.N. et al. // J. Lumin. 2015. V. 167. P. 120. https://doi.org/10.1016/j.jlumin.2015.06.011
- Волчек А.А., Кузнецов С.В. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1005. https://doi.org/10.31857/S0044457X22602371
- Li Z., Zhang Y., Huang L. et al. // Theranostics. 2016. V. 6. № 13. P. 2380. https://doi.org/10.7150/thno.15914
- Sorokin N.I., Karimov D.N., Grebenev V.V. et al. // Crystallogr. Rep. 2016. V. 61. № 2. P. 270. https://doi.org/10.1134/S1063774516020267
- Kobayashi S., Kokubo M. // Synlett. 2008. V. 2008. № 10. P. 1562. https://doi.org/10.1055/s-2008-1078409
- Cao J., Yuan L., Hu S. et al. // CrystEngComm. 2016. V. 18. № 31. P. 5940. https://doi.org/10.1039/c6ce01198e
- Ai Y., Tu D., Zheng W. et al. // Nanoscale. 2013. V. 5. № 14. P. 6430. https://doi.org/10.1039/C3NR01529G
- Piskunov S., Žguns P.A., Bocharov D. et al. // Phys. Rev. B: Condens. Matter. 2016. V. 93. № 21. P. 214101. https://doi.org/10.1103/PhysRevB.93.214101
- Hu L., Chen J., Sanson A. et al. // J. Am. Chem. Soc. 2016. V. 138. № 27. P. 8320. https://doi.org/10.1021/jacs.6b02370
- Yang C., Tong P., Lin J.C. et al. // Appl. Phys. Lett. 2016. V. 109. № 2. P. 023110. https://doi.org/10.1063/1.4959083
- Greve B.K., Martin K.L., Lee P.L. et al. // J. Am. Chem. Soc. 2010. V. 132. № 44. P. 15496. https://doi.org/10.1021/ja106711v
- Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Chem. Phys. 2015. V. 143. № 23. P. 234702. https://doi.org/10.1063/1.4937415
- Denecke M.A., Gunßer W., Privalov A.V. et al. // Solid State Ionics. 1992. V. 52. № 4. P. 327. https://doi.org/10.1016/0167-2738(92)90179-S
- Wang F., Grey C.P. // Chem. Mater. 1997. V. 9. № 5. P. 1068. https://doi.org/10.1021/cm970044f
- Sorokin N.I., Smirnov A.N., Fedorov P.P. et al. // Russ. J. Electrochem. 2009. V. 45. № 5. P. 606. https://doi.org/10.1134/S1023193509050206
- Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Fluorine Chem. 2016. V. 188. P. 185. https://doi.org/10.1016/j.jfluchem.2016.07.006
- Gulina L.B., Privalov A.F., Weigler M. et al. // Appl. Magn. Reson. 2020. V. 51. № 12. P. 1691. https://doi.org/10.1007/s00723-020-01247-5
- Sinitsyn V.V., Lips O., Privalov A.F. et al. // J. Phys. Chem. Solids. 2003. V. 64. № 7. P. 1201. https://doi.org/10.1016/S0022-3697(03)00050-7
补充文件
