Dispersed Metal Alloys: Synthesis Methods and Catalytic Properties (Review)
- 作者: Rudneva Y.V.1, Korenev S.V.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- 期: 卷 69, 编号 8 (2024)
- 页面: 1181-1200
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666391
- DOI: https://doi.org/10.31857/S0044457X24080112
- EDN: https://elibrary.ru/XJKBDA
- ID: 666391
如何引用文章
详细
The review is devoted to dispersed powdery porous (including deposited) double and ternary metal alloys. Various approaches to the synthesis of these alloys, as well as modern areas of their practical application are considered. An analysis of the relevance of the study of highly dispersed alloys and the feasibility of developing new methods for their production is presented.
全文:

作者简介
Yu. Rudneva
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: rudneva@niic.nsc.ru
俄罗斯联邦, Novosibirsk
S. Korenev
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: rudneva@niic.nsc.ru
俄罗斯联邦, Novosibirsk
参考
- Singh A.K., Xu Q. // ChemCatChem. 2013. V. 5. № 3. P. 652. https://doi.org/10.1002/cctc.201200591
- Rudneva Yu.V., Shubin Y.V., Plyusnin P.E. et al. // 20th Annu. Conf. YUCOMAT-2018. Herceg Novi, Montenegro, Sept. 3–7, 2018. P. 95.
- Lagunova V., Rubilkin P., Filatov E. et al. // New J. Chem. 2024. V. 48. № 4. P. 1578. https://doi.org/10.1039/D3NJ05311C
- Filatov E.Y., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. № 39. P. 19009. https://doi.org/10.1039/D2NJ03402F
- Vedyagin A.A., Plyusnin P.E., Kenzhin R.M. et al. // Mater. Sci. Forum. 2020. V. 998. P. 151. https://doi.org/10.4028/www.scientific.net/MSF.998.151
- Vedyagin A.A., Shubin Y.V., Kenzhin R.M. et al. // ToP. Catal. 2019. V. 62. № 1–4. P. 305. https://doi.org/10.1007/s11244-018-1093-0
- Shubin Y., Plyusnin P., Sharafutdinov M. et al. // Nanotechnology. 2017. V. 28. № 20. P. 205302. https://doi.org/10.1088/1361-6528/aa6bc9
- Volodin V.N., Tuleushev Y.Z., Zhakanbaev E.A. et al. // Phys. Met. Metallogr. 2023. V. 124. № 5. P. 479. https://doi.org/10.1134/S0031918X23600422
- Sarakinos K., Greczynski G., Elofsson V. et al. // J. Appl. Phys. 2016. V. 119. № 9. https://doi.org/10.1063/1.4942840
- Воронков М.Г., Татарова Л.А., Трофимова и др. // Химия в интересах устойчивого развития. 2001. Т. 9. С. 393.
- Конорев О.А., Занавескин Л.Н., Сурис А.Л., Ускач Я.Л. // Экология и промышленность России. 2003. Т. 1. С. 8.
- Nilekar A.U., Alayoglu S., Eichhorn B. et al. // J. Am. Chem. Soc. 2010. V. 132. № 21. P. 7418. https://doi.org/10.1021/ja101108w
- Kondoh H., Toyoshima R., Monya Y. et al. // Catal. Today. 2016. V. 260. P. 14. https://doi.org/10.1016/j.cattod.2015.05.016
- Zhao X., Liu Q., Li Q. et al. // Chem. Eng. J. 2020. V. 400. P. 125744. https://doi.org/10.1016/j.cej.2020.125744
- Gadenin M.M. // Inorg. Mater. 2023. V. 59. № 15. P. 1565. https://doi.org/10.1134/S0020168523150049
- Ievlev V.M., Pavlov I.S., Solntsev K.A. et al. // Inorg. Mater. 2023. V. 59. № 12. P. 1295. https://doi.org/10.1134/S002016852312004X
- Bogatov Y.V., Shcherbakov A.V., Shcherbakov V.A. et al. // Inorg. Mater. 2023. V. 59. № 10. P. 1148. https://doi.org/10.1134/S0020168523100011
- Volkov A.Y., Podgorbunskaya P.O., Novikova O.S. et al. // Inorg. Mater. 2023. V. 59. № 6. P. 563. https://doi.org/10.1134/S0020168523060171
- Bagiyeva G.Z., Abdinova G.J., Aliyeva T.J. et al. // Inorg. Mater. 2023. V. 59. № 12. P. 1289. https://doi.org/10.1134/S0020168523120014
- Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718. https://doi.org/10.1070/RC2014v083n08ABEH004432
- Toshima N., Yonezawa T. // New J. Chem. 1998. V. 22. № 11. P. 1179. https://doi.org/10.1039/a805753b
- Ponec V. // Appl. Catal., A: Gen. 2001. V. 222. № 1–2. P. 31. https://doi.org/10.1016/S0926-860X(01)00828-6
- Huynh K.H., Pham X.H., Kim J. et al. // Int. J. Mol. Sci. 2020. V. 21. № 14. P. 1. https://doi.org/10.3390/ijms21145174
- Basavegowda N., Mishra K., Lee Y.R. // J. Alloys Compd. 2017. V. 701. P. 456. https://doi.org/10.1016/j.jallcom.2017.01.122
- Bhunia K., Khilari S., Pradhan D. // Dalton Trans. 2017. V. 46. № 44. P. 15558. https://doi.org/10.1039/C7DT02608K
- Gholivand M.-B., Jalalvand A.R., Goicoechea H.C. et al. // Talanta. 2015. V. 131. P. 249. https://doi.org/10.1016/j.talanta.2014.07.040
- Birdi K.S. Handbook of Surface and Colloid Chemistry. N.Y.: CRC Press, 2003. 756 p.
- Сумм Б.Д. Основы коллоидной химии. М.: Академия, 2006. 240 c.
- Rudneva Y.V., Shubin Y.V., Plyusnin P.E. et al. // J. Alloys Compd. 2019. V. 782. P. 716. https://doi.org/10.1016/j.jallcom.2018.12.207
- Chen A., Holt-Hindle P. // Chem. ReV. 2010. V. 110. № 6. P. 3767. https://doi.org/10.1021/cr9003902
- Zaleska-Medynska A., Marchelek M., Diak M. et al. // Adv. Colloid Interface Sci. 2016. V. 229. P. 80. https://doi.org/10.1016/j.cis.2015.12.008
- Jibowu T. // Front. Nanosci. Nanotechnol. 2016. V. 2. № 4. P. 165. https://doi.org/10.15761/FNN.1000129
- Гропянов А.В., Ситов Н.Н., Жукова М.Н. Порошковые материалы. М.: ВШТЭ СПбГУПТД, 2017. 74 с.
- Солнцев Ю.П., Пряхин Е.И. Материаловедение. М.: Химиздат, 2020. 640 с.
- Первов М.Л., Васильева А.В. Производство изделий из гранулируемых алюминиевых сплавов. Рыбинск: РГАТУ им. П. А. Соловьева, 2015. 48 с.
- Балахонцев Г.А., Барбанель Р.И., Бондарев Б.И. и др. Производство полуфабрикатов из алюминиевых сплавов. М.: Металлургия, 1985. 352 с.
- Pervikov A.V., Lоzhkomoev A.S., Bakina O.V. et al. // Russ. Phys. J. 2021. V. 63. № 9. P. 1557. https://doi.org/10.1007/s11182-021-02206-8
- Shi H., Wu J., Li X. et al. // Plasma Sources Sci. Technol. 2019. V. 28. № 8. P. 085010. https://doi.org/10.1088/1361-6595/ab216f
- Svarovskaya N.V., Bakina O.V., Pervikov A.V. et al. // Russ. Phys. J. 2020. V. 62. № 9. P. 1580. https://doi.org/10.1007/s11182-020-01879-x
- Pervikov A.V., Dvilis E.S., Khrustalev A. et al. // Inorg. Mater. Appl. Res. 2021. V. 12. № 3. P. 755. https://doi.org/10.1134/S207511332103028X
- Pervikov A.V., Lerner M.I., Bakina O.V. et al. // Inorg. Mater. Appl. Res. 2019. V. 10. № 3. P. 699. https://doi.org/10.1134/S2075113319030328
- Kim W., Park J.-S., Suh C.-Y. et al. // Mater. Lett. 2007. V. 61. № 21. P. 4259. https://doi.org/10.1016/j.matlet.2007.01.106
- Wang Q., Yang H., Shi J. et al. // Mater. Sci. Eng., A. 2001. V. 307. № 1–2. P. 190. https://doi.org/10.1016/S0921-5093(00)01966-3
- Lee J.-G., Li P., Choi C.-J. et al. // Thin Solid Films. 2010. V. 519. № 1. P. 81. https://doi.org/10.1016/j.tsf.2010.07.063
- Mao A., Xiang H., Ran X. et al. // J. Alloys Compd. 2019. V. 775. P. 1177. https://doi.org/10.1016/j.jallcom.2018.10.170
- Filatov E.Y., Novopashin S.A., Korenev S.V. // Russ. J. Inorg. Chem. 2013. V. 58. № 1. P. 78. https://doi.org/10.1134/S0036023613010063
- Karbalaei Akbari M., Derakhshan R., Mirzaee O. // Chem. Eng. J. 2015. V. 259. P. 918. https://doi.org/10.1016/j.cej.2014.08.053
- Fujimoto T., Terauchi S., Umehara H. et al. // Chem. Mater. 2001. V. 13. № 3. P. 1057. https://doi.org/10.1021/cm000910f
- Баранчиков А.Е., Иванов В.К., Третьяков Ю.Д. // Успехи химии. 2007. Т. 76. № 2. С. 147.
- Suslick K.S., Hyeon T., Fang M. et al. // Mater. Sci. Eng., A. 1995. V. 204. № 1–2. P. 186. https://doi.org/10.1016/0921-5093(95)09958-1
- Shafi K.V.P.M., Gedanken A., Prozorov R. // J. Mater. Chem. 1998. V. 8. № 3. P. 769. https://doi.org/10.1039/a706871i
- Shafi K.V.P.M., Gedanken A., Goldfarb R.B. et al. // J. Appl. Phys. 1997. V. 81. № 10. P. 6901. https://doi.org/10.1063/1.365250
- Matin M.A., Jang J.-H., Kwon Y.-U. // Int. J. Hydrogen Energy. 2014. V. 39. № 8. P. 3710. https://doi.org/10.1016/j.ijhydene.2013.12.137
- Singh G., Kapoor I.P.S., Dubey S. // J. Alloys Compd. 2009. V. 480. № 2. P. 270. https://doi.org/10.1016/j.jallcom.2009.02.024
- Srivastava P., Dubey R., Kapoo P.S.I. et al. // Indian J. Chem. 2010. V. 49A. P. 1339.
- Xu Y., Yuan Y., Ma A. et al. // ChemPhysChem. 2012. V. 13. № 10. P. 2601. https://doi.org/10.1002/cphc.201100989
- Zakharov Y.A., Pugachev V.M., Bogomyakov A.S. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 1008. https://doi.org/10.1021/acs.jpcc.9b07897
- Zhang J.-M., Wang R.-X., Nong R.-J. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 10. P. 7226. https://doi.org/10.1016/j.ijhydene.2016.05.198
- Singh S., Srivastava P., Singh G. // J. Alloys Compd. 2013. V. 562. P. 150. https://doi.org/10.1016/j.jallcom.2013.02.034
- Liu X., Fu G., Chen Y. et al. // Chem. Eur. J. 2014. V. 20. № 2. P. 585. https://doi.org/10.1002/chem.201302834
- Wang Z.-L., Ping Y., Yan J.-M. et al. // Int. J. Hydrogen Energy. 2014. V. 39. № 10. P. 4850. https://doi.org/10.1016/j.ijhydene.2013.12.148
- Liu Y., Shen X. // J. Saudi Chem. Soc. 2019. V. 23. № 8. P. 1032. https://doi.org/10.1016/j.jscs.2019.05.012
- Mohamed Saeed G.H., Radiman S., Gasaymeh S.S. et al. // J. Nanomater. 2010. V. 2010. P. 1. https://doi.org/10.1155/2010/184137
- Perry R.H., Green D.W. Perry’s Сhemical Еngineers’ Handbook. McGraw-Hill Professional, 1997. 2640 p.
- Некрасов Б.В. Основы общей химии. М.: Химия, 1973. Т. 2. 340 с.
- Yang T.-K., Lee D.-S., Haas J. // Encycl. Reagents Org. Synth. 2005. P. 1.
- Xu C., Wang L., Mu X. et al. // Langmuir. 2010. V. 26. № 10. P. 7437. https://doi.org/10.1021/la9041474
- Qi Z., Geng H., Wang X. et al. // J. Power Sources. 2011. V. 196. № 14. P. 5823. https://doi.org/10.1016/j.jpowsour.2011.02.083
- Shui J.L., Chen C., Li J.C.M. // Adv. Funct. Mater. 2011. V. 21. № 17. P. 3357. https://doi.org/10.1002/adfm.201100723
- Liu L., Scholz R., Pippel E. et al. // J. Mater. Chem. 2010. V. 20. № 27. P. 5621. https://doi.org/10.1039/C0JM00113A
- Wang D., Zhao P., Li Y. // Sci. Rep. 2011. V. 1. № 1. P. 37. https://doi.org/10.1038/srep00037
- Du C., Chen M., Wang W. et al. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 2. P. 105. https://doi.org/10.1021/am100803d
- Liu L., Pippel E., Scholz R. et al. // Nano Lett. 2009. V. 9. № 12. P. 4352. https://doi.org/10.1021/nl902619q
- Guryanov A.M., Yudin S.N., Kasimtsev A.V. et al. // Inorg. Mater. 2023. V. 59. № 5. P. 463. https://doi.org/10.1134/S0020168523050059
- Snyder J., Asanithi P., Dalton A.B. et al. // Adv. Mater. 2008. V. 20. № 24. P. 4883. https://doi.org/10.1002/adma.200702760
- Erlebacher J., Investigator P., Program D.O.E. et al. // Rev. Lit. Arts Am. 2010. P. 1.
- Chen L.Y., Chen N., Hou Y. et al. // ACS Catal. 2013. V. 3. № 6. P. 1220. https://doi.org/10.1021/cs400135k
- Ou S., Ma D., Li Y. et al. // J. Alloys Compd. 2017. V. 706. P. 215. https://doi.org/10.1016/j.jallcom.2017.02.203
- Zeng L., You C., Cai X. et al. // J. Mater. Res. Technol. 2020. V. 9. № 3. P. 6909.
- Joo S.-H., Kato H. // Mater. Des. 2020. V. 185. P. 108271. https://doi.org/10.1016/j.matdes.2019.108271
- Кирилович А.К., Плюснин П.Е., Пирязев Д.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 7. С. 905.
- Heck R.M., Farrauto R.J. // Appl. Catal., A: Gen. 2001. V. 221. № 1–2. P. 443. https://doi.org/10.1016/S0926-860X(01)00818-3
- Zadesenets A.V., Filatov E.Y., Yusenko K.V. et al. // Inorg. Chim. Acta. 2008. V. 361. № 1. P. 199. https://doi.org/10.1016/j.ica.2007.07.006
- Zadesenets A.V., Filatov E.Y., Plyusnin P.E. et al. // New J. Chem. 2018. V. 42. № 11. P. 8843. https://doi.org/10.1039/C8NJ00956B
- Zadesenets A.V., Venediktov A.B., Shubin Y.V. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 4. P. 500. https://doi.org/10.1134/S0036023607040067
- Vedyagin A.A., Plyusnin P.E., Rybinskaya A.A. et al. // Mater. Res. Bull. 2018. V. 102. P. 196. https://doi.org/10.1016/j.materresbull.2018.02.038
- Shubin Y.V., Zadesenets A.V., Venediktov A.B. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 2. P. 202. https://doi.org/10.1134/S0036023606020070
- Shubin Y.V., Plyusnin P.E., Korenev S.V. // J. Alloys Compd. 2015. V. 622. P. 1055. https://doi.org/10.1016/j.jallcom.2014.10.187
- Vedyagin A.A., Stoyanovskii V.O., Plyusnin P.E. et al. // J. Alloys Compd. 2018. V. 749. P. 155. https://doi.org/10.1016/j.jallcom.2018.03.250
- Семушина Ю.П., Плюснин П.Е., Шубин Ю.В. и др. // Изв. Акад. наук. 2015. V. 8. P. 1963.
- Zadesenets A., Filatov E., Plyusnin P. et al. // Polyhedron. 2011. V. 30. № 7. P. 1305. https://doi.org/10.1016/j.poly.2011.02.012
- Kostin G.A., Borodin A.O., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2017. V. 457. P. 145. https://doi.org/10.1016/j.ica.2016.12.016
- Asanova T.I., Asanov I.P., Kim M.-G. et al. // J. Nanoparticle Res. 2013. V. 15. № 10. P. 1994. https://doi.org/10.1007/s11051-013-1994-6
- Shubin Y.V., Vedyagin A.A., Plyusnin P.E. et al. // J. Alloys Compd. 2018. V. 740. P. 935. https://doi.org/10.1016/j.jallcom.2017.12.127
- Potemkin D.I., Maslov D.K., Loponov K. et al. // Front. Chem. 2018. V. 6. https://doi.org/10.3389/fchem.2018.00085
- Shubin Y., Plyusnin P., Sharafutdinov M. // Nanotechnology. 2012. V. 23. № 40. P. 405302. https://doi.org/10.1088/0957-4484/23/40/405302
- Simonov A.N., Plyusnin P.E., Shubin Y.V. et al. // Electrochim. Acta. 2012. V. 76. P. 344. https://doi.org/10.1016/j.electacta.2012.05.043
- Shubin Y., Plyusnin P., Sharafutdinov M. et al. // Nanotechnology. 2017. V. 28. № 20. P. 205302. https://doi.org/10.1088/1361-6528/aa6bc9
- Plyusnin P.E., Makotchenko E.V., Shubin Y.V. et al. // J. Mol. Struct. 2015. V. 1100. P. 174. https://doi.org/10.1016/j.molstruc.2015.07.023
- Макотченко Е.В., Плюснин П.Е., Шубин Ю.В. и др. // Журн. неорган. химии. 2017. Т. 62. № 1. С. 15. https://doi.org/10.7868/S0044457X17010111
- Potemkin D.I., Snytnikov P.V., Semitut E.Y. et al. // Catal. Ind. 2014. V. 6. № 1. P. 36. https://doi.org/10.1134/S2070050414010073
- Potemkin D.I., Semitut E.Y., Shubin Y.V. et al. // Catal. Today. 2014. V. 235. P. 103. https://doi.org/10.1016/j.cattod.2014.04.026
- Martynova S.A., Filatov E.Y., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
- Гладышева М.В., Плюснин П.Е., Шубин Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1041.
- Руднев А.В., Лысакова А.С., Плюснин П.Е. и др. // Неорган. материалы. 2014. Т. 50. № 6. С. 613. https://doi.org/10.7868/S0002337X14060153
- Бауман Ю.И., Руднева Ю.В., Мишаков И.В. и др. // Кинетика и катализ. 2018. Т. 59. № 3. С. 371. https://doi.org/10.7868/s0453881118030176
- Xie X., Li Y., Liu Z.-Q. et al. // Nature. 2009. V. 458. № 7239. P. 746. https://doi.org/10.1038/nature07877
- Twigg M.V. // Appl. Catal., B: Environ. 2007. V. 70. № 1–4. P. 2. https://doi.org/10.1016/j.apcatb.2006.02.029
- Loza K., Heggen M., Epple M. // Adv. Funct. Mater. 2020. V. 30. № 21. https://doi.org/10.1002/adfm.201909260
- Ha H., Yoon S., An K. et al. // ACS Catal. 2018. V. 8. № 12. P. 11491. https://doi.org/10.1021/acscatal.8b03539
- Yuan W., Zhu B., Fang K. et al. // Science (80-). 2021. V. 371. № 6528. P. 517. https://doi.org/10.1126/science.abe3558
- Saavedra J., Pursell C.J., Chandler B.D. // J. Am. Chem. Soc. 2018. V. 140. № 10. P. 3712. https://doi.org/10.1021/jacs.7b12758
- van Spronsen M.A., Frenken J.W.M., Groot I.M.N. // Chem. Soc. Rev. 2017. V. 46. № 14. P. 4347. https://doi.org/10.1039/C7CS00045F
- Гаркуль И.А., Задесенец А.В., Плюснин П.Е. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1371. https://doi.org/10.31857/S0044457X20100062
- Potemkin D.I., Filatov E.Y., Zadesenets A.V. et al. // Catal. Commun. 2017. V. 100. P. 232. https://doi.org/10.1016/j.catcom.2017.07.008
- Potemkin D.I., Filatov E.Y., Zadesenets A.V. et al. // Mater. Lett. 2020. V. 260. P. 126915. https://doi.org/10.1016/j.matlet.2019.126915
- Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. № 1. P. 62. https://doi.org/10.1134/S2070050418010099
- Potemkin D.I., Konishcheva M.V., Zadesenets A.V. et al. // Kinet. Catal. 2018. V. 59. № 4. P. 514. https://doi.org/10.1134/S0023158418040110
- Потемкин Д.И., Снытников П.В., Бадмаев С.Д. и др. // Российские нанотехнологии. 2021. Т. 16. № 2. С. 215.
- Shubin Y.V., Plyusnin P.E., Kenzhin R.M. et al. // Kinet. Catal. 2023. V. 64. № 6. P. 922. https://doi.org/10.1134/S0023158423060149
- Laguna O.H., Pérez A., Centeno M.A. et al. // Appl. Catal., B: Environ. 2015. V. 176–177. P. 385. https://doi.org/10.1016/j.apcatb.2015.04.019
- Hossain S.T., Azeeva E., Zhang K. et al. // Appl. Surf. Sci. 2018. V. 455. P. 132. https://doi.org/10.1016/j.apsusc.2018.05.101
- Zhu C., Ding T., Gao W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 27. P. 17457. https://doi.org/10.1016/j.ijhydene.2017.02.088
- Elazab H.A. // Biointerface Res. Appl. Chem. 2018. V. 8. № 3. P. 3278.
- Zhang X., Zhang X., Song L. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 39. P. 18279. https://doi.org/10.1016/j.ijhydene.2018.08.060
- Zhang X., Deng Y.-Q., Tian P. et al. // Appl. Catal., B: Environ. 2016. V. 191. P. 179. https://doi.org/10.1016/j.apcatb.2016.03.030
- Venkataswamy P., Rao K.N., Jampaiah D. et al. // Appl. Catal., B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
- Li L., Chai S.-H., Binder A. et al. // RSC AdV. 2015. V. 5. № 121. P. 100212. https://doi.org/10.1039/C5RA11487J
- Zhan W., Wang J., Wang H. et al. // J. Am. Chem. Soc. 2017. V. 139. № 26. P. 8846. https://doi.org/10.1021/jacs.7b01784
- Kumar J., Deo G., Kunzru D. // Int. J. Hydrogen Energy. 2016. V. 41. № 41. P. 18494. https://doi.org/10.1016/j.ijhydene.2016.08.109
- Chen G., Zhao Y., Fu G. et al. // Science. 2014. V. 344. № 6183. P. 495. https://doi.org/10.1126/science.1252553
- Zhang X., Tian P., Tu W. et al. // ACS Catal. 2018. V. 8. № 6. P. 5261. https://doi.org/10.1021/acscatal.7b04287
- Wu C.H., Liu C., Su D. et al. // Nat. Catal. 2018. V. 2. № 1. P. 78. https://doi.org/10.1038/s41929-018-0190-6
- Michalak W.D., Krier J.M., Alayoglu S. et al. // J. Catal. 2014. V. 312. P. 17. https://doi.org/10.1016/j.jcat.2014.01.005
- Zhang H., Liu X., Zhang N. et al. // Appl. Catal., B: Environ. 2016. V. 180. P. 237. https://doi.org/10.1016/j.apcatb.2015.06.032
- Оленин А.Ю., Мингалев П.Г., Лисичкин Г.В. // Нефтехимия. 2018. Т. 58. № 4. С. 367.
- Wala M., Simka W. // Molecules. 2021. V. 26. № 8. P. 2144. https://doi.org/10.3390/molecules26082144
- Bai J., Liu D., Yang J. et al. // ChemSusChem. 2019. V. 12. № 10. P. 2117. https://doi.org/10.1002/cssc.201803063
- Peera S.G., Lee T.G., Sahu A.K. // Sustain. Energy Fuels. 2019. V. 3. № 8. P. 1866. https://doi.org/10.1039/C9SE00082H
- Tian H., Yu Y., Wang Q. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 61. P. 31202. https://doi.org/10.1016/j.ijhydene.2021.07.006
- Yuda A., Ashok A., Kumar A. // Catal. Rev. 2020. V. 64. № 1. P. 126. https://doi.org/10.1080/01614940.2020.1802811
- Wu P., Song L., Wang Y. et al. // Appl. Surf. Sci. 2021. V. 537. P. 148059. https://doi.org/10.1016/j.apsusc.2020.148059
- Yang X., Wang Q., Qing S. et al. // Adv. Energy Mater. 2021. V. 11. № 26. https://doi.org/10.1002/aenm.202100812
- Ding X., Li M., Jin J. et al. // Chin. Chem. Lett. 2022. V. 33. № 5. P. 2687. https://doi.org/10.1016/j.cclet.2021.09.076
- Ren F., Zhang Z., Liang Z. et al. // J. Colloid Interface Sci. 2022. V. 608. P. 800. https://doi.org/10.1016/j.jcis.2021.10.054
- Zhang J., Zhao T., Yuan M. et al. // J. Colloid Interface Sci. 2021. V. 602. P. 504. https://doi.org/10.1016/j.jcis.2021.06.028
- Fan F., Chen D.-H., Yang L. et al. // J. Colloid Interface Sci. 2022. V. 628. P. 153. https://doi.org/10.1016/j.jcis.2022.08.032
- You H., Gao F., Wang C. et al. // ChemElectroChem. 2021. V. 8. № 19. P. 3637. https://doi.org/10.1002/celc.202100864
- Alves L., Pereira V., Lagarteira T. et al. // Renew. Sustain. Energy Rev. 2021. V. 137. P. 110465. https://doi.org/10.1016/j.rser.2020.110465
- Gamal A., Eid K., El-Naas M.H. et al. // Nanomaterials. 2021. V. 11. № 5. P. 1226. https://doi.org/10.3390/nano11051226
- Park C., Engel E.S., Crowe A. et al. // Langmuir. 2000. V. 16. № 21. P. 8050. https://doi.org/10.1021/la9916068
- Rao C.N.R., Cheetham A.K. // J. Mater. Chem. 2001. V. 11. № 12. P. 2887. https://doi.org/10.1039/b105058n
- Rzepka M., Bauer E., Reichenauer G. et al. // J. Phys. Chem. B. 2005. V. 109. № 31. P. 14979. https://doi.org/10.1021/jp051371a
- Fan Y.-Y., Liao B., Liu M. et al. // Carbon N. Y. 1999. V. 37. № 10. P. 1649. https://doi.org/10.1016/S0008-6223(99)00165-7
- Шадринов Н.В., Нартахова С.И. // Науч. журн. КубГАУ. 2016. Т. 115. № 1. С. 1.
- Шадринов Н.В., Нартахова С.И. // Перспективные материалы. 2016. Т. 4. С. 53.
- Дрянин Р.А., Суздальцев О.В., Ананьев С.В. // Технические науки. 2014. Т. 5–6. № 27–28. С. 39. https://doi.org/10.15350/2221-9552.2014.5-6.0005
- Гербер Д.В. // Успехи в химии и химической технологии. 2011. Т. 25. № 6. С. 22.
- Pelsoci T.M. Composites Manufacturing Technologies: Applications in Automotive, Petroleum and Civil Infrastructure Industries. NIST GCR 04-863. National Institute of Standards and Technology, 2004. P. 74.
- Тимошков П.Н., Хрульков А.В., Язвенко Л.Н. // Труды ВИАМ. 2017. № 6. С. 7. https://doi.org/10.18577/2307-6046-2017-0-6-7-7
- Kim J.M., Choi W.B., Lee N.S. et al. // Diam. Relat. Mater. 2000. V. 9. № 3–6. P. 1184. https://doi.org/10.1016/S0925-9635(99)00266-6
- Saito Y., Hamaguchi K., Uemura S. et al. // Appl. Phys. A: Mater. Sci. Process. 1998. V. 67. № 1. P. 95. https://doi.org/10.1007/s003390050743
- Endo M., Kim Y., Hayashi T. et al. // Carbon N.Y. 2001. V. 39. № 9. P. 1287. https://doi.org/10.1016/S0008-6223(00)00295-5
- Subramanian V., Zhu H., Wei B. // J. Phys. Chem. B. 2006. V. 110. № 14. P. 7178. https://doi.org/10.1021/jp057080j
- Bezemer G.L., Bitter J.H., Kuipers H.P.C.E. et al. // J. Am. Chem. Soc. 2006. V. 128. № 12. P. 3956. https://doi.org/10.1021/ja058282w
- Takasaki M., Motoyama Y., Higashi K. et al. // Org. Lett. 2008. V. 10. № 8. P. 1601. https://doi.org/10.1021/ol800277a
- Maiyalagan T., Scott K. // J. Power Sources. 2010. V. 195. № 16. P. 5246. https://doi.org/10.1016/j.jpowsour.2010.03.022
- Zhu J., Zhou J., Zhao T. et al. // Appl. Catal., A: Gen. 2009. V. 352. № 1–2. P. 243. https://doi.org/10.1016/j.apcata.2008.10.012
- Pham-Huu C., Keller N., Ehret G. et al. // J. Mol. Catal. A: Chem. 2001. V. 170. № 1–2. P. 155. https://doi.org/10.1016/S1381-1169(01)00055-3
- Chand S. // J. Mater. Sci. 2000. V. 35. P. 1303.
- Wangxi Z., Jie L., Gang W. // Carbon N.Y. 2003. V. 41. № 14. P. 2805. https://doi.org/10.1016/S0008-6223(03)00391-9
- Чесноков В.В., Буянов Р.А. // Успехи химии. 2000. Т. 69. № 7. С. 675.
- Мишаков И.В., Буянов Р.А., Чесноков В.В. // Катализ в промышленности. 2002. № 4. С. 33.
- Мишаков И.В., Чесноков В.В., Буянов Р.А., Пахомов Н.А. // Кинетика и катализ. 2001. Т. 42. № 4. С. 598.
- Бауман Ю.И., Мишаков И.В., Ведягин А.А. и др. // Катализ в промышленности. 2012. № 2. С. 18.
- Мишаков И.В., Буянов Р.А., Зайковский В.И. и др. // Кинетика и катализ. 2008. V. 49. № 6. С. 916.
- Nieto-Marquez A., Valverde J.L., Keane M.A. // Appl. Catal., A: Gen. 2007. V. 332. P. 237. https://doi.org/10.1016/j.apcata.2007.08.028
- Chary K.V.R., Rao P.V.R., Vishwanathan V. // Catal. Commun. 2006. № 7. P. 974. https://doi.org/10.1016/j.catcom.2006.04.013
- Wang X., Feng Y., Unalan H.E. et al. // Carbon. 2011. V. 49. P. 214. https://doi.org/10.1016/j.carbon.2010.09.006
- Usoltseva A., Kuznetsov V., Rudina N. et al. // Рhys. Status Solidi. 2007. V. 244. № 11. P. 3920. https://doi.org/10.1002/pssb.200776143
- He L., Hu S., Yin X. et al. // Fuel. 2020. V. 276. P. 118116. https://doi.org/10.1016/j.fuel.2020.118116
- Yao D., Wang C.-H. // Appl. Energy. 2020. V. 265. P. 114819. https://doi.org/10.1016/j.apenergy.2020.114819
- Ayillath Kutteri D., Wang I.-W., Samanta A. et al. // Catal. Sci. Technol. 2018. V. 8. № 3. P. 858. https://doi.org/10.1039/C7CY01927K
- Audier M., Coulon M., Bonnetain L. // Carbon N. Y. 1983. V. 21. № 2. P. 93. https://doi.org/10.1016/0008-6223(83)90162-8
- Mishakov I.V., Kutaev N.V., Bauman Y.I. et al. // J. Struct. Chem. 2020. V. 61. № 5. P. 769. https://doi.org/10.1134/S0022476620050133
- Бауман Ю.И., Лысакова А.С., Руднев А.В. и др. // Российские нанотехнологии. 2014. Т. 9. № 7–8. С. 31.
- Mishakov I.V., Bauman Y.I., D’yachkova S.G. et al. // Dokl. Chem. 2023. V. 508. № 2. P. 62. https://doi.org/10.1134/S0012500823600086
- Bauman Y.I., Mishakov I.V., Vedyagin A.A. et al. // Top. Catal. 2017. V. 60. № 1–2. P. 171. https://doi.org/10.1007/s11244-016-0729-1
- Bauman Y.I., Mishakov I.V., Rudneva Y.V. et al. // Catal. Today. 2020. V. 348. P. 102. https://doi.org/10.1016/j.cattod.2019.08.015
- Potylitsyna A.R., Rudneva Y.V., Bauman Y.I. et al. // Materials (Basel). 2023. V. 16. № 2. P. 845. https://doi.org/10.3390/ma16020845
- Mishakov I.V., Bauman Y.I., Potylitsyna A.R. et al. // Kinet. Catal. 2022. V. 63. № 1. P. 75. https://doi.org/10.1134/S0023158422010037
- Shubin Y.V., Bauman Y.I., Plyusnin P.E. et al. // J. Alloys Compd. 2021. V. 866. P. 158778. https://doi.org/10.1016/j.jallcom.2021.158778
- Afonnikova S.D., Bauman Y.I., Stoyanovskii V.O. et al. // C. 2023. V. 9. № 3. P. 77. https://doi.org/10.3390/c9030077
- Shubin Y.V., Maksimova T.A., Popov A.A. et al. // Appl. Catal., A: Gen. 2024. V. 670. P. 119546. https://doi.org/10.1016/j.apcata.2023.119546
- Afonnikova S.D., Popov A.A., Bauman Y.I. et al. // Materials (Basel). 2022. V. 15. № 21. P. 7456. https://doi.org/10.3390/ma15217456
- Popov A.A., Afonnikova S.D., Varygin A.D. et al. // React. Kinet. Mech. Catal. 2023. V. 137. P. 323. https://doi.org/10.1007/s11144-023-02549-y
- Wang C., Bauman Y.I., Mishakov I.V. et al. // Processes. 2022. V. 10. № 3. P. 506. https://doi.org/10.3390/pr10030506
- Song R., Ji Q. // Chem. Lett. 2011. V. 40. № 10. P. 1110. https://doi.org/10.1246/cl.2011.1110
- Lobiak E.V., Shlyakhova E.V., Bulusheva L.G. et al. // J. Alloys Compd. 2015. V. 621. P. 351. https://doi.org/10.1016/j.jallcom.2014.09.220
- Zhou L.P., Ohta K., Kuroda K. et al. // J. Phys. Chem. B. 2005. V. 109. № 10. P. 4439. https://doi.org/10.1021/jp045284e
- Li Y., Zhang X.B., Tao X.Y. et al. // Carbon N. Y. 2005. V. 43. № 2. P. 295. https://doi.org/10.1016/j.carbon.2004.09.014
- Bauman Y.I., Rudneva Y.V., Mishakov I.V. et al. // Heliyon. 2019. V. 5. № 9. P. e02428. https://doi.org/10.1016/j.heliyon.2019.e02428
- Jang E., Park H.K., Choi J.H. et al. // Bull. Korean Chem. Soc. 2015. V. 36. № 5. P. 1452. https://doi.org/10.1002/bkcs.10285
- Zhang X., Liu Y., Deng J. et al. // Appl. Catal., B: Environ. 2019. V. 257. P. 117879. https://doi.org/10.1016/j.apcatb.2019.117879
- Zhang X., Dai L., Liu Y. et al. // Catal. Sci. Technol. 2020. V. 10. № 11. P. 3755. https://doi.org/10.1039/D0CY00681E
补充文件
附件文件
动作
1.
JATS XML
下载 (208KB)
3.
Fig. 2. Model images of particles of various types of alloys: solid solution (a); intermetallic (b); polyphase alloy (c); single-layer core-shell structure (d), variants of multilayer alloys of core-shell structure (e, f)
下载 (532KB)
4.
Fig. 3. SEM micrographies of Ni1–xPdx dispersed alloys (5 wt. % Pd) obtained at synthesis temperatures of 400 (a), 600 (b), 800 °C (c) [29]
下载 (689KB)
5.
Fig. 4. Schematic diagram of the production of bimetallic alloys by thermolysis of DCS using the reaction described in [91] as an example. The symbol Δ indicates the effect on the system (in this case, it is an increase in temperature)
下载 (182KB)
