Оптимизация условий получения феррита никеля для создания магнитных композитных фотокатализаторов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ферриты цветных металлов являются многообещающими магнитными катализаторами, которые после использования легко отделить от реакционной смеси с помощью магнитного поля. Однако характерное для них быстрое время электронно-дырочной релаксации снижает их активность в фотореакциях. Данная проблема решается получением гибридных наноструктур на основе ферритов, например композитов с оксидом цинка. Каталитическая активность таких структур в значительной степени зависит от метода их синтеза. В данной работе для получения наиболее стехиометричного и однородного по составу и структуре прекурсора феррита никеля использовано щелочное соосаждение ионов Fe2+ и Ni2+, имеющих близкие значения ПР гидроксидов. Методом планирования и обработки результатов эксперимента исследовано влияние реакционных параметров на содержание фазы феррита никеля и размер полученных частиц. В найденных оптимальных условиях синтезированы сферические наночастицы диаметром 15.9 ± 1.1 нм. На основе полученного материала и оксида цинка сформированы магнитные композиты различного количественного состава. Фотокаталитическая активность гибридных структур показана на примере фотодеградации красителя кристаллического фиолетового.

Полный текст

Доступ закрыт

Об авторах

Д. И. Немкова

Сибирский федеральный университет

Автор, ответственный за переписку.
Email: diana.saykova@mail.ru
Россия, Свободный пр-т, 79, Красноярск, 660041

С. В. Сайкова

Сибирский федеральный университет; Институт химии и химической технологии СО РАН – обособленное подразделение ФИЦ КНЦ СО РАН

Email: diana.saykova@mail.ru
Россия, Свободный пр-т, 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036

А. Е. Кроликов

Сибирский федеральный университет

Email: diana.saykova@mail.ru
Россия, Свободный пр-т, 79, Красноярск, 660041

Е. В. Пикурова

Сибирский федеральный университет; Институт химии и химической технологии СО РАН – обособленное подразделение ФИЦ КНЦ СО РАН

Email: diana.saykova@mail.ru
Россия, Свободный пр-т, 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036

А. С. Самойло

Сибирский федеральный университет

Email: diana.saykova@mail.ru
Россия, Свободный пр-т, 79, Красноярск, 660041

Список литературы

  1. Литюк Л.М., Журавлев Г.И. Химия и технология ферритов: Учебное пособие для вузов. Л.: Химия, 1983. 256 с.
  2. Вест А. Химия твердого тела. Теория и приложения. М.: Мир, 1988. Ч. 1. 558 с.
  3. Преображенский А.А., Бишард Е.Г. Магнитные материалы и элементы. М.: Высш. шк., 1986. 256 с.
  4. Zangeneh H., Zinatizadeh A.A., Zinadini S. еt al. // Composites Part B. 2019. V. 176. P. 107158. https://doi.org/10.1016/j.compositesb.2019.107158
  5. An P., Zuo F., Li X. et al. // Nano. 2013. V. 8. № 6. P.1350061-1. https://doi.org/10.1142/S1793292013500616
  6. Iqbal A., Haq A. ul, Cerron-Calle G.A. et al. // Catalysts. 2021. V. 11. P. 806. https://doi.org/10.3390/catal11070806
  7. Shokri A. // Environ. Chall. 2021. V. 5. P. 100332. https://doi.org/10.1016/j.envc.2021.100332
  8. Arumugham N., Mariappan A., Eswaran J. et al. // J. Hazard. Mater. 2022. V. 8. P. 100156. https://doi.org/10.1016/j.hazadv.2022.100156
  9. Peymanfar R., Ramezanalizadeh H. // Optik. 2018. V. 169. P. 424. https://doi.org/10.1016/j.ijleo.2018.05.072
  10. Yang H., Zhang X., Weiqin A., Guangzhou Q. // Mater. Res. Bull. 2004. V. 39. № 6. P. 833.
  11. Azizi A., Sadrnezhaad S.K. // Ceram. Int. 2010. V. 36. № 7. P. 2241. https://doi.org/10.1016/j.ceramint.2010.06.004.
  12. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 37. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  13. Лисневская И.В., Боброва И.А., Петрова А.В., Лупейко Т.Г. // Журн. неорган. химии. 2012. Т. 57. С. 474.
  14. Sivakumar P., Ramesh R., Ramanand A. et al. // Mater. Res. Bull. 2011. № 46. P. 2208. https://doi.org/10.1016/j.materresbull.2011.09.010
  15. Mana R., Raguram T., Rajni K.S. // Mater. Today: Proc. 2019. № 18. P. 1753.
  16. Кузнецов М.В., Морозов Ю.Г., Белоусова О.В. // Неорган. материалы. 2012. Т. 48. № 10. С. 1172.
  17. Hernandeza P.T., Kuznetsov M.V., Morozov I.G., Parkind I.P. // Mater. Sci. Eng., B. 2019. № 244. P. 81. https://doi.org/10.1016/j.mseb.2019.05.003
  18. Shafi K., Koltypin Y., Gedanken A. // J. Phys. Chem. B. 1997. V. 101. № 33. P. 6409.
  19. Fang J., Shama N., Tung L.D. // J. Appl. Phys. 2003. V. 93. № 10. P. 7483.
  20. Rodriguez-Rodriguez A.A., Moreno-Trejo M.B., Melendez-Zaragoza M.J. et al. // Int. J. Hydrogen Energy. 2018. V. 30. P. 12421. https://doi.org/10.1016/j.ijhydene.2018.09.183
  21. Елисеев А.А., Лукашин А.В. Функциональные наноматериалы. М.: Физматлит, 2010. 456 c.
  22. Udhayaa P.A., Bessy T.C., Meena M. // Mater. Today: Proceedings. 2019. V. 8. P. 169. https://doi.org/10.1016/j.matpr.2019.02.096
  23. Mapossa A.B., Dantas J., Silva M.R. // Arabian J. Chem. 2019. V. 30. P. 1. https://doi.org/10.1016/j.arabjc.2019.09.003
  24. Jifeng Q., Tinghua Ch., Shi L. et al. // Chin. Chem. Lett. 2019. V. 30. P. 1198. https://doi.org/10.1016/j.cclet.2019.01.021
  25. Morelos-Santos O., Reyes de la Torre A.I., Schacht-Hernandez P. et al. // Catal. Today. 2019. V. 329. P. 1. https://doi.org/10.1016/j.cattod.2019.10.012
  26. Zhang S., Jiang W., Li Y. et al. // Sens. Actuators, B. 2019. V. 291. P. 266. https://doi.org/10.1016/j.snb.2019.04.090
  27. Chen D.H., He X.R. // Mater. Res. Bull. 2001. № 36. P. 1369. https://doi.org/10.1016/S0025-5408(01)00620-1
  28. Hassan A., Khan M.A., Shahid M. et al. // J. Magn. Magn. Mater. 2015. V. 393. P. 56. https://doi.org/10.1016/j.jmmm.2015.05.033
  29. Velmurugan K., Venkatachalapathy V.S.K., Sendhilnathan S. // Mater. Res. 2010. V. 13. P. 299. https://doi.org/10.1590/S1516-14392010000300005
  30. Gadkari А.В., Shinde T.J., Vasambekar P.N. // J. Mater. Sci. – Mater. Electron. 2010. V. 21. P. 96. https://doi.org/10.1007/s10854-009-9875-6
  31. Maaz K., Karim S., Mumtaz A. et al. // J. Magn. Magn. Mater. 2009. № 321. P. 1838. https://doi.org/10.1016/j.jmmm.2008.11.098
  32. Трофимова Т.В., Сайкова С.В., Пантелеева М.В. и др. // Стекло и керамика. 2018. № 2. С. 38.
  33. Сайкова С.В., Трофимова Т.В., Павликов А.Ю., Самойло А.С. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 287.
  34. Chen C.C., Liao H.J., Cheng C.Y. et al. // Biotechnol. Lett. 2007. V. 29. P. 391. https://doi.org/10.1007/s10529-006-9265-6
  35. Chen K.C., Wu J-Y., Huang C-C. et al. // J. Biotechnol. 2003. V. 101. P. 241. https://doi.org/10.1016/S0168-1656(02)00362-0
  36. Cho B.P., Yang T., Blankenship L.R. et al. // Chem. Res. Toxicol. 2003. V. 16. P. 285. https://doi.org/10.1021/tx0256679
  37. Saykova D., Saikova S., Mikhlin Yu. et al. // Metals. 2020. V. 10. № 1. P. 1075. https://doi.org/10.3390/met10081075
  38. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 280 с.
  39. Сайкова С.В., Немкова Д.И., Пикурова Е.В., Самойло А.С. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1011.
  40. CRC Handbook of Chemistry and Physics / Ed. Lide D.R. CRC Press, 2017. 2560 p.
  41. Yusmar A., Armitasari L., Suharyadi E. // Mater. Today: proceedings. 2018. V. 5. P. 14955. https://doi.org/10.1016/j.matpr.2018.04.037
  42. Sharifi I. // J. Magn. Magn. Mater. 2012. V. 324. № 15. P. 2397. https://doi.org/10.1016/j.jmmm.2012.03.008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурная формула (а) и электронный спектр поглощения (б) кристаллического фиолетового.

Скачать (91KB)
3. Рис. 2. Схема установки для проведения фотокатали- тической реакции.

Скачать (81KB)
4. Рис. 3. Дифрактограммы образцов, полученных в опытах 1–8: + — NiFe2O4, * — Fe2O3.

Скачать (200KB)
5. Рис. 4. Дифрактограмма образца 9, полученного в оптимальных условиях и прокаленного при 650°С.

Скачать (69KB)
6. Рис. 5. Микрофотография ПЭМ (а) и распределение по размерам (б) частиц образца 9, полученного в оптимальных условиях и прокаленного при 650°С.

Скачать (139KB)
7. Рис. 6. Дифрактограммы композитов, полученных на основе NiFe2O4 и ZnO после обжига при 800°С: + – ZnxNi1–xFe2O4, * – ZnO, o – Fe2O3, ~ – неидентифицируемые рентгеновские рефлексы.

Скачать (165KB)
8. Рис. 7. Зависимость параметра решетки фазы со структурой шпинели от мольной доли ZnО в композитах на основе NiFe2O4 и ZnO.

Скачать (53KB)
9. Рис. 8. Изменение оптической плотности раствора кристаллического фиолетового (λmax = 590 нм) в зависимости от длительности процесса фотокаталитического разложения: 1 – NiFe2O4, 2 – ZnFe2O4, 3 – образец К4, 4 – образец К3, 5 – образец К2, 6 – образец К5, 7 – образец К1.

Скачать (103KB)
10. Рис. 9. Влияние состава фотокатализатора на степень деструкции кристаллического фиолетового (1 ч).

Скачать (61KB)

© Российская академия наук, 2024