Thermophysical properties of ceramics produced from nanocrystalline InFeZnO4 powder
- Autores: Kondrat’eva O.N.1, Smirnova M.N.1, Nikiforova G.E.1, Tyurin A.V.1, Ketsko V.A.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Edição: Volume 70, Nº 8 (2025)
- Páginas: 1021-1030
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/690762
- DOI: https://doi.org/10.31857/S0044457X25080051
- EDN: https://elibrary.ru/jjkjtz
- ID: 690762
Citar
Texto integral



Resumo
The paper discusses the results of a study of the structural and thermophysical characteristics of polycrystalline ceramics produced from the InFeZnO4 nanoparticles. It was found that the bulk density of the resulting material is ~86% of the theoretical one. Scanning electron microscopy has shown that it has a dense microcrystalline structure consisting of randomly oriented grains with dimensions of 5–20 µm. The thermal diffusivity of InFeZnO4 ceramics was studied using the laser flash method. It was found that as the temperature increases from 299 to 1273 K, it decreases from 1.29 to 0.44 mm2/s. Using adiabatic and differential scanning calorimetry, the temperature dependence of the heat capacity of InFeZnO4 was studied for the first time. It was established that the measured curve has no signs of the existence of phase transitions in the range from 83 to 923 K. Using experimental data on thermal diffusivity, heat capacity, and density, an equation for the dependence describing the change in thermal conductivity of the material under study in the range from 299 to 1273 K was obtained. It was revealed that ceramics produced from InFeZnO4 nanoparticles obtained by the polymer-salt method have a higher thermal conductivity compared to those synthesized by standard ceramic technology from a mixture of In2O3, Fe2O3 and ZnO oxides. The results obtained allow us to recommend InFeZnO4 as a basis for the creation of thermally stable functional materials with low thermal conductivity at high temperatures.
Sobre autores
O. Kondrat’eva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ol.kondratieva@gmail.com
31 Leninsky Prospect, Moscow, 119991 Russia
M. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ol.kondratieva@gmail.com
31 Leninsky Prospect, Moscow, 119991 Russia
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ol.kondratieva@gmail.com
31 Leninsky Prospect, Moscow, 119991 Russia
A. Tyurin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ol.kondratieva@gmail.com
31 Leninsky Prospect, Moscow, 119991 Russia
V. Ketsko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: ol.kondratieva@gmail.com
31 Leninsky Prospect, Moscow, 119991 Russia
Bibliografia
- Kimizuka N., Isobe M., Nakamura M. et al. // J. Solid State Chem. 1993. V. 103. P. 394. https://doi.org/10.1006/jssc.1993.1115
- Zhao L.-D., Pei Y.-L., Liu Y. et al. // J. Am. Ceram. Soc. 2011. V. 94. № 6. P. 1664. https://doi.org/10.1111/j.1551-2916.2011.04550.x
- Zhang C., Pei Y., Zhao L.-D. et al. // J Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
- Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Nanosystems: Phys. Chem. Math. 2024. V. 15. № 5. P. 693. https://doi.org/10.17586/2220-8054-2024-15-5-693-701
- Qu W.-W., Zhang X.-X., Yuan B.-F. et al. // Rare Met. 2018. V. 37. P. 79. https://doi.org/10.1007/s12598-017-0978-6
- Guo H., Zhang C., Pei Y. et al. // J. Alloys Compd. 2014. V. 585. P. 404. https://doi.org/10.1016/j.jallcom.2013.09.169
- Zhang L., Pei Y., Guo H. et al. // J. Alloys Compd. 2015. V. 623. P. 203. https://doi.org/10.1016/j.jallcom.2014.10.046
- Narendranath S.B., Yadav A.K., Bhattacharyya D. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 15. P. 12321. https://doi.org/10.1021/am501976z
- Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
- Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1095. https://doi.org/10.31857/S0044457X24080012
- Archer D.G. // J. Phys. Chem. Ref. Data. 1993. V. 22. № 6. P. 1441. http://dx.doi.org/10.1063/1.555931
- Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/A:1017970924312
- Sasaki K., Suzuki A., Akasaka N. et al. // Int. J. Appl. Ceram. Technol. 2011. V. 8. № 2. P. 455. https://doi.org/10.1111/j.1744-7402.2009.02463.x
- Mikuśkiewicz M., Moskal G., Stopyra M. et al. // J. Therm. Anal. Calorim. 2025 (in press). https://doi.org/10.1007/s10973-025-14133-8
- Zhang X., Wu H., Pei Y. et al. // Acta Mater. 2017. V. 136. P. 235. http://dx.doi.org/10.1016/j.actamat.2017.07.012
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. № 7. P. 2083. https://doi.org/10.1021/je400316m
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Richet P., Fiquet G. // J. Geophys. Res. 1991. V. 96. № B1. P. 445. https://doi.org/10.1029/90JB02172
- Klemens P.G., Gell M. // Mater. Sci. Eng. A. 1998. V. 245. P. 143. https://doi.org/10.1016/S0921-5093(97)00846-0
- Limarga A.M., Clarke D.R. // Appl. Phys. Lett. 2011. V. 98. № 21. P. 211906. https://doi.org/10.1063/1.3593383
- Kingery W.D. Introduction to Ceramics, 1st ed. John Wiley & Sons Ltd., 1960.
- Стильбанс Л.С. Физика полупроводников. М.: Изд-во “Советское радио”, 1967. 452 с.
- Charvat F.R., Kingery W.D. // J. Am. Ceram. Soc. 1957. V. 40. № 9. P. 306. https://doi.org/10.1111/j.1151-2916.1957.tb12627.x
- Lee D.W., Kingery W.D. // J. Am. Ceram. Soc. 1960. V. 43. № 11. P. 594. https://doi.org/10.1111/j.1151-2916.1960.tb13623.x
- Hirata Y., Shimonosono T., Itoh S. et al. // Ceram. Int. 2017. V. 43. № 13. P. 10410. http://doi.org/10.1016/j.ceramint.2017.05.076
- Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
- Wan C., Zhang W., Wang Y. et al. // Acta Mater. 2010. V. 58. № 18. P. 6166. https://doi.org/10.1016/j.actamat.2010.07.035
- Di Girolamo G., Blasi C., Pilloni L. et al. // Ceram. Int. 2010. V. 36. № 4. P. 1389. https://doi.org/10.1016/j.ceramint.2010.02.007
- Xu Z., He L., Mu R. et al. // J. Alloys Compd. 2009. V. 473. № 1–2. P. 509. https://doi.org/10.1016/j.jallcom.2008.06.064
Arquivos suplementares
