Peculiarities of electrokinetic properties of suspensions of nano- and microsized particles
- 作者: Kalinina E.G.1,2, Rusakova D.S.1, Ermakova L.V.3
-
隶属关系:
- Institute of Electrophysics, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- 期: 卷 99, 编号 8 (2025)
- 页面: 1214-1223
- 栏目: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- ##submission.dateSubmitted##: 06.11.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://kazanmedjournal.ru/0044-4537/article/view/695894
- DOI: https://doi.org/10.7868/S3034553725080128
- ID: 695894
如何引用文章
详细
The features of electrokinetic properties of suspensions of nano- and micro-sized Ce0.8Sm0.2O1.9 (SDC) particles obtained by laser evaporation and condensation (LIC) and solution combustion methods are presented. The influence of surface nitro groups in the composition of LIC nanoparticles on suspension stabilization and zeta potential value was revealed. The influence of updating the dispersion medium on the properties of suspensions was studied, as well as the addition of cerium nitrate on the electrokinetic properties of suspensions of nano- and micro-sized particles and the character of electrophoretic deposition. The irreversible nature of the loss of stability of the suspension of LIC nanoparticles was established. The influence of the porous character of microsized particles on the electrophoresis process was shown.
作者简介
E. Kalinina
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: jelen456@yandex.ru
Yekaterinburg, Russia; Yekaterinburg, Russia
D. Rusakova
Institute of Electrophysics, Ural Branch, Russian Academy of SciencesYekaterinburg, Russia
L. Ermakova
Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburg, Russia
参考
- Pikalova E. Yu., Kalinina E.G. // Russ. Chem. Rev. 2021. V. 90. P. 703. https://doi.org/10.1070/rcr4966 [Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. С. 703. https://doi.org/10.1070/rcr4966].
- Erpalov M.V., Tarutin A.P., Danilov N.A. et al. // Ibid. 2023. V. 92. № 10. P. RCR5097. https://doi.org/10.59761/RCR5097 [Ерпалов М.В., Тарутин А.П., Данилов Н.А. и др. // Там же. 2023. Т. 92. № 10. С. RCR5097. https://doi.org/10.59761/RCR5097].
- Pikalova E. Yu., Kalinina E.G. // Renew Sustain. Energy Rev. 2019. V. 116. P. 109440. https://doi.org/10.1016/j.rser.2019.109440.
- Lee S.H., Woo S.P., Kakati N. et al. // Energies. 2018. V. 11. P. 3122. https://doi.org/10.3390/en11113122.
- Aznam I., Mah J.C.W., Muchtar A. et al. // J. Zhejiang Univ. Sci. A. 2018. V. 19. № 11. P. 811. https://doi.org/10.1631/jzus.A1700604.
- Bhattacharjee S. // J. Controlled Release. 2016. V. 235. P. 337. https://doi.org/10.1016/j.jconrel.2016.06.017.
- Sarkar P., Nicholson P.S. // J. Am. Ceram. Soc. 1996. V. 79. P. 1987. https://doi.org/10.1111/j.1151-2916.1996.tb08929.x.
- Lyklema J. // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 376. № 1–3. P. 2. https://doi.org/10.1016/j.colsurfa.2010.09.021.
- Pikalova E., Osinkin D., Kalinina E. // Membranes. 2022. V. 12. P. 682. https://doi.org/10.3390/membranes12070682.
- Osipov V.V., Kotov Yu.A., Ivanov M.G. et al. // Laser Phys. V. 16. № 1. P. 116. https://doi.org/10.1134/S1054660X06010105.
- Kalinina E.G., Samatov O.M., Safronov A.P. // Inorg. Mater. 2016. V. 52. № 8. P. 858. https://doi.org/10.1134/S0020168516080094 [Калинина Е.Г., Саматов О.М., Сафронов А.П. // Неорган. материалы. 2016. Т. 52. № 8. С. 922. https://doi.org/10.7868/S0002337X16080091].
- Wang H., Han X., Chen Y. et al. // Sci. Total Environ. 2021. V. 757. P. 143962. https://doi.org/10.1016/j.scitotenv.2020.143962.
- Kalinina E.G., Rusakova D.S., Terziyan T.V. // Russ. J. Phys. Chem. A. 2024. V. 98. № 11. P. 2650. https://doi.org/10.1134/S0036024424701851.
- Lyklema J. // Physicochem. Eng. Aspects. 2006. V. 291. P. 3. https://doi.org/10.1016/j.colsurfa.2006.06.043.
- Chou C.-H., Hsu J.-P., Kuo C.-C. et al. // Colloids Surf. B: Biointerfaces. 2012. V. 93. P. 154. https://doi.org/10.1016/j.colsurfb.2011.12.031.
- Hsu H.-P., Lee E. // J. Colloid Interface Sci. 2013. V. 390. № 1. P. 85. https://doi.org/10.1016/j.jcis.2012.09.036.
- Mokkelbost T., Kaus I., Grande T., Einarsrud M. // Chem. Mater. 2004. V. 16. P. 5489. https://doi.org/10.1021/cm048583p.
- Accardo G., Ferone C., Cioffi R. et al. // J. Appl. Biomater. Funct. Mater. 2016. V. 14. № 1. P. 35. https://doi.org/10.5301/jabfm.5000265.
- Anjaneya K.C., Nayaka G.P., Manjanna J. et al. // Solid State Sci. 2013. V. 26. P. 89. http://dx.doi.org/10.1016/j.solidstatesciences.2013.09.015.
- Ivanov M., Kalinina E., Kopylov Yu. et al. // J. Europ. Ceram. Soc. 2016. V. 36. P. 4251. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.06.013.
补充文件



