ЭЛЕКТРОТЕРМОКОНВЕКЦИЯ В ПЕРЕМЕННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ ПРИ УМЕРЕННОЙ АВТОНОМНОЙ ИНЖЕКЦИИ ЗАРЯДА В ЖИДКИЙ ДИЭЛЕКТРИК

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проанализированы электротермоконвективные течения вязкой несжимаемой диэлектрической жидкости, помещенной в модулированное электрическое поле плоского конденсатора. Жидкость нагревается со стороны верхнего электрода (катода), с которого происходит умеренная инжекция отрицательного заряда. На плоскости амплитуда модуляции — обратная частота построена карта режимов поведения жидкости. Продемонстрирована возможность подавления электротермоконвекции в модулированном поле. Обнаружены различные типы отклика на переменное внешнее воздействие — модулированные бегущие и стоячие волны. Получены характеристики модулированных волн.

Об авторах

О. О. Некрасов

Пермский государственный национальный исследовательский университет

Email: dakeln2@gmail.com
Пермь, Россия

Б. Л. Смородин

Пермский государственный национальный исследовательский университет

Email: bsmorodin@yandex.ru
Пермь, Россия

Список литературы

  1. Г. А. Остроумов, Взаимодействие электрических и гидродинамических полей, Наука, Москва (1979).
  2. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).
  3. Ю. К. Стишков, А. А. Остапенко, Электродинамические течения в жидких диэлектриках, Издво Ленингр. ун-та, Ленинград (1989).
  4. М. К. Болога, Ф. П. Гросу, И. А. Кожухарь, Электроконвекция и теплообмен, Штиинца, Кишенев (1977).
  5. А. И. Жакин, УФН 185, 495 (2012).
  6. F. Pontiga and A. Castellanos, Phys. Fluids 6, 1684 (1994).
  7. А. Н. Мордивнов, Б. Л. Смородин, ЖЭТФ 141, 997 (2012).
  8. J. C. Lacroix, P. Atten, and E. J. Hopfinger, J. Fluid Mech. 69, 539 (1975).
  9. А. Н. Верещага, Е. Л. Тарунин, в сб. Численное и экспериментальное моделирование гидродинамических явлений в невесомости, Свердловск: УрО АН СССР, (1988), стр. 92.
  10. Ph. Traore, A. T. Perez, D. Koulova et al., Fluid Mech. 658, 279 (2010).
  11. J. Wu and P. Traor´e, Numer. Heat Transfer, Part A 68, 471 (2015).
  12. T. F. Li, K. Luo, and H. L. Yi, Phys. Fluids 31, 064106 (2019).
  13. J. Selvakumar, J. Wu, J. Huang et al., Int. J. Heat and Fluid Flow 89, 108787 (2021).
  14. В. А. Ильин, В. Н. Александрова, ЖЭТФ 157, 349 (2020).
  15. Б. Л. Смородин, ЖЭТФ 161, 137 (2022).
  16. B. L. Smorodin and I. N. Cherepanov, Eur. Phys. J. E 37, 118 (2014).
  17. O. O. Nekrasov, B. L. Smorodin, Mathematics 11, 1188 (2023).
  18. О. О. Некрасов, Б. Л. Смородин, Вычислительная механика сплошных сред 15, 316 (2022).
  19. Г. З. Гершуни, Е. М. Жуховицкий, Конвективная устойчивость несжимаемой жидкости, Наука, Москва (1972).
  20. Л. Д. Ландау, Е. М. Лившиц, Теоретическая физика. Т. VI. Гидродинамика, Наука, Москва (1986).
  21. A. T. P´erez and A. Castellanos, Phys. Rev. A 40, 5844 (1989).
  22. А. Н. Верещага, Дисс. ... канд. физ.-матем. наук, Пермь (1990).
  23. А. А. Самарский, Е. С. Николаев, Методы решения сеточных уравнений, Наука, Москва (1978).
  24. Л. Д. Ландау, Е. М. Лившиц, Теоретическая физика. Т. I. Механика, Наука, Москва (1988).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025