Determination of endocrine disruptors in bottom sediments using gas chromatography-mass spectrometry with analyte preconcentration by liquid-liquid and magnetic dispersive solid-phase extraction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A method is proposed for extracting and concentrating six common endocrine disruptors (dimethyl-, diethyl-, dibutyl phthalates, bisphenol A, octyl- and nonylphenols) from river bottom sediments. The analytes were extracted using a two-stage concentration approach. In the first stage, analytes were extracted from aqueous solution using an ionic liquid – 1-hexyl-3-methylimidazolium hexafluorophosphate – in the presence of a surfactant (sodium dodecylsulfonate). The volumes used were 200 μL of extractant and 0.5 mL of 12 % surfactant solution, with a 2-minute extraction time. In the second stage, magnetic dispersive solid-phase extraction was performed using magnetically active plant-based carbon modified with reverse-phase reagents – n-octyltrimethoxysilane and n-octadecyltrimethoxysilane. The analyte recovery was 91–99 % for liquid-liquid extraction and 89–99 % for magnetic dispersive extraction. Optimal extraction conditions were pH 5.2–7.0, 5 minutes sorption time using centrifugation at 4000 rpm, and 25 mg of sorbent. The two-stage concentration method, combined with gas chromatography-mass spectrometry, enabled detection of endocrine disruptors in bottom sediments at levels of 0.4–0.7 µg/kg.

About the authors

A. S. Gubin

Voronezh State University of Engineering Technologies

Email: goubinne@mail.ru
Revolution Avenue, 19, Voronezh, 394036 Russia

K. S. Sypko

Voronezh State University of Engineering Technologies; North-Caucasus Federal University

Revolution Avenue, 19, Voronezh, 394036 Russia; Pushkin Street, 1, Stavropol, 355017 Russia

A. A. Kushnir

Voronezh State University of Engineering Technologies

Revolution Avenue, 19, Voronezh, 394036 Russia

P. T. Sukhanov

Voronezh State University of Engineering Technologies

Revolution Avenue, 19, Voronezh, 394036 Russia

References

  1. Baluyot J.C., Reyes E.M., Velarde M.C. Per-and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia’s freshwater resources // Environ. Res. 2021. V. 197. Article 111122. https://doi.org/10.1016/j.envres.2021.111122
  2. Ahn C., Jeung E.B. Endocrine-disrupting chemicals and disease endpoints // Int. J. Mol. Sci. 2023. V. 24. P. 5342. https://doi.org/10.3390/ijms24065342
  3. Haoxuan C., Yuqing L., Zhipeng Z., Xiaochu W., Xiaoming S., Yujuan W. Enhanced removal of endocrine disrupting chemicals by chemically modified biochar: Efficiency and mechanisms // J. Ind. Eng. Chem. 2025. V. 144. P. 192. https://doi.org/10.1016/j.jiec.2024.10.012
  4. Saravanabhavan G., Guay M., Langlois É., Giroux S., Murray J., Haines D. Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007–2009) // Int. J. Hyg. Environ. Health. 2013. V. 216. P. 652. https://doi.org/10.1016/j.ijheh.2012.12.009
  5. Kumari A., Kaur R. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation // Plant. Growth Regul. 2020. V. 91. P. 327. https://doi.org/10.1007/s10725-020-00625-0
  6. Hasan M.M., Tama R.T., Dona H.A., Hoque N.S., Rahaman M.A., Alam M.A. Comprehensive review of phthalate exposure: Health implications, biomarker detection and regulatory standards // J. Steroid Biochem. Mol. Biol. 2025. V. 247. Article 106671. https://doi.org/10.1016/j.jsbmb.2024.106671
  7. Tuan Tran H., Lin C., Bui X.T., Ky Nguyen M., Dan Thanh Cao N., Mukhtar H., Giang Hoang H., Varjani S., Hao Ngo H., Nghiem L.D. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies // Bioresour. Technol. 2022. V. 344. Article 126249. https://doi.org/10.1016/j.biortech.2021.126249
  8. Asimakopoulos A.G., Thomaidis N.S., Koupparis M.A. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol // Toxicol. Lett. 2012. V. 210. P. 141. https://doi.org/10.1016/j.toxlet.2011.07.032
  9. Li Y., Liu H., Zhang L., Lou C., Wang Y. Phenols in soils and agricultural products irrigated with reclaimed water // Environ. Pollut. 2021. V. 276. Article 116690. https://doi.org/10.1016/j.envpol.2021.116690
  10. Кушнир А.А., Сыпко К.С., Губин А.С., Сизо К.О., Суханов П.Т. Применение шелухи риса (oryza sativa) в качестве сорбционного материала для удаления поллютантов из водных сред // Химия растительного сырья. 2022. № 3. С. 5. (Kushnir A.A., Sypko K.S., Gubin A.S., Sizo K.O., Sukhanov P.T. Application of Rice (Oryza Sativa) Husk as a sorption material for the removal of pollutants from aqueous media (A Review) // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1535. https://doi.org/10.1134/S1068162023070798)
  11. Ghosh S., Sahu M. Adsorptive removal of dimethyl phthalate using peanut shell-derived biochar from aqueous solutions: equilibrium, kinetics, and mechanistic studies // Environ. Sci. Pollut. Res. 2023. V. 30. P. 87599. https://doi.org/10.1007/s11356-023-28598-3
  12. Guo L., Hao L., Gao T., Wang C., Wu Q., Wang Z. p-Phenylenediamine-modified graphene oxide as a sorbent for solid-phase extraction of phenylurea herbicides, nitroimidazoles, chlorophenols, phenylurea insecticides and phthalates // Microchim. Acta. 2019. V. 186. Article 464. https://doi.org/10.1007/s00604-019-3606-3
  13. Kazemi M., Niazi A., Yazdanipour A. Solid-phase microextraction of phthalate esters from aqueous media by functionalized carbon nanotubes (graphene oxide nanoribbons) and determination by GC-FID // Chromatographia. 2021. V. 84. P. 559. https://doi.org/10.1007/s10337-021-04032-z
  14. Farajzadeh M.A., Pezhhanfar S., Zarei M., Mohebbi A. Simultaneous elimination of diethyl phthalate, butylated hydroxy toluene and butylated hydroxy anisole from aqueous medium by an adsorption process on pretreated waste material; investigation of isotherms and neural network modeling // J. Iran Chem. Soc. 2020. V. 17. P. 1377. https://doi.org/10.1007/s13738-020-01863-9
  15. Amiri A., Ghaemi F. Microextraction in packed syringe by using a three-dimensional carbon nanotube/carbon nanofiber–graphene nanostructure coupled to dispersive liquid-liquid microextraction for the determination of phthalate esters in water samples // Microchim. Acta. 2017. V. 184. P. 3851. https://doi.org/10.1007/s00604-017-2416-8
  16. Wu Q., Zhou X., Sun M., Ma X., Wang C., Wang Z. Preparation of magnetic ordered microporous carbon for the preconcentration of some phthalate esters followed by their determination by HPLC // Microchim. Acta. 2015. V.182. P. 879. https://doi.org/10.1007/s00604-014-1402-7
  17. De Almeida M.C., Pereira de Sá F., Oliveira A.C.D.J., Rodrigues C.A.P., Costa Veloso D.F.M., Samba P.F., De Oliveira T.F., Cagnon B. Activated carbons from Brazilian lignocellulosic residues from baru and jurubeba as adsorbents for removal of diethyl phthalate in aqueous phase // Desalin. Water Treat. 2024. V. 320. Article 100761. https://doi.org/10.1016/j.dwt.2024.100761
  18. Wideł D., Jedynak K., Witkiewicz Z. Application of ordered micro-mesoporous carbon materials activated by steam and CO2 or KOH in solid-phase extraction of selected phthalates from aqueous samples // Desalin. Water Treat. 2021. V. 232. P. 91. https://doi.org/10.5004/dwt.2021.27521
  19. Wideł D., Słomkiewicz P. M., Dołęgowska S. Application of mineral-carbon composite in solid-phase extraction of phthalates from water // Desalin. Water Treat. 2025. V. 321. Article 100995. https://doi.org/10.1016/j.dwt.2025.100995
  20. Xie X., Ma X., Guo L., Fan Y., Zeng G., Zhang M., Li J. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water // Chem. Eng. J. 2019. V. 357. P. 56. https://doi.org/10.1016/J.CEJ.2018.09.080
  21. Губин А.С., Кушнир А.А., Суханов П.Т. Применение матричного твердофазного диспергирования в сочетании с газовой хроматографией-масс-спектрометрией для определения бисфенола А в пресноводных рыбах // Вестн. Моск. ун-та. Серия 2. Химия. 2024. Т. 65. № 5. С. 431. (Gubin A.S., Kushnir A.A., Sukhanov P.T. Application of matrix solid-phase dispersion combined with gas chromatography-mass spectrometry for the determination of bisphenol a in fresh-water fishes // Moscow. Univ. Chem. Bull. 2024. V. 79. P. 351.) https://doi.org/10.3103/S0027131424700391
  22. Gubin A.S., Sukhanov P.T., Kushnir A.A. Magnetic sorbent modified by humate for the extraction of alkylphenols, bisphenol A and estradiol // Mendeleev Commun. 2023. V. 33. № 2. P. 285. https://doi.org/10.1016/j.mencom.2023.02.044
  23. Губин А.С., Суханов П.Т., Кушнир А.А. Применение композита на основе наночастиц магнетита, оксида графена и ионной жидкости для извлечения бисфенола А из донных отложений методом матричного твердофазного диспергирования // Журн. аналит. химии. 2024. Т. 79. № 9. С. 1016. (Gubin A.S., Sukhanov P.T., Kushnir A.A. Application of a composite based on magnetite nanoparticles, graphene oxide, and an ionic liquid for the extraction of bisphenol a from bottom sediments by the matrix solid-phase dispersion method // J. Anal. Chem. 2024. V. 79. P. 1277.) https://doi.org/10.1134/S1061934824700631
  24. Gubin A.S., Sukhanov P.T., Kushnir A.A. Targeted screening of phenolic toxicants in waters and bottom sediments of the middle reaches of the Don river // Chem. Sustain. Dev. 2024. V. 32. № 3. P. 371. https://doi.org/10.15372/CSD2024568
  25. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В., Фурлетов А.А. Дисперсионная и магнитная твердофазная экстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2024. Т. 79. № 2. C. 99. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V., Furletov A.A. Dispersive and magnetic solid-phase extraction of organic compounds: Review of reviews // J. Anal. Chem. 2024. V. 79. P. 105.) https://doi.org/10.1134/S1061934824020060
  26. Сыпко К.С., Губин А.С., Кушнир А.А., Суханов П.Т. Применение магнитных углей, полученных из растительного сырья на основе шелухи риса, для извлечения хлорфеноксиуксусных кислот и их метаболитов // Сорбционные и хроматографические процессы. 2023. Т. 23. № 3. С. 395. https://doi.org/10.17308/sorpchrom.2023.23/11319.
  27. Сыпко К.С., Губин А.С., Суханов П.Т., Кушнир А.А., Пугачева И.Н. Определение 2,4-дихлорфеноксиуксусной кислоты и ее метаболита в почвах методом газовой хроматографии-масс-спектрометрии после предварительного концентрирования с применением магнитного угля на основе рисовой шелухи // Аналитика и контроль. 2024. Т. 28. № 1. С. 38. https://doi.org/10.15826/analitika.2024.28.1.004
  28. Сыпко К.С., Губин А.С., Суханов П.Т., Кушнир А.А. Применение шипучих таблеток на основе магнитного угля для концентрирования и определения дихлорфеноксикарбоновых кислот и их метаболитов методом газовой хроматографии-масс-спектрометрии в почве и природных водах // Журн. аналит. химии. 2024. Т. 79. № 7. С. 760. (Sypko K.S., Gubin A.S., Sukhanov P.T, Kushnir A.A. Application of effervescent tablets based on magnetic charcoal for the precon-centration and determination of dichlorophenoxyacetic acids and their metabolites by gas chromatography–mass spectrometry in soils and natural waters // J. Anal. Chem. 2024. V. 79. № 7. Р. 973.). https://doi.org/10.1134/S1061934824700345
  29. Sánchez-Avila J., Bonet J., Velasco G., Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant // Sci. Total. Environ. 2009. V. 407. № 13. P. 4157. https://doi.org/10.1016/j.scitotenv.2009.03.016
  30. ГОСТ 17.1.5.01-80. Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность. М.: Издательство стандартов, 2002. 7 с.
  31. Rahman, A., Brown, C.W. Effect of pH on the critical micelle concentration of sodium dodecyl sulphate // J. Appl. Polym. Sci. 1983. V. 28. № 4. P. 1331. https://doi.org/10.1002/app.1983.070280407 https://chemaxon.com/marvin (дата обращения 10.02.2025 г).
  32. Ghosh S., Sahu M. Phthalate pollution and remediation strategies: A review // J. Hazard. Mater. 2022. V. 6. Article 100065. https://doi.org/10.1016/j.hazadv.2022.100065
  33. Qureshi U.A., Solangi A.R., Memon S.Q., Hyder Taqvi S.I. Utilization of Pine Nut Shell derived carbon as an efficient alternate for the sequestration of phthalates from aqueous system // Arab. J. Chem. 2014. V. 7. № 6. P. 1166. https://doi.org/10.1016/j.arabjc.2013.08.018
  34. Signal, Noise, and Detection Limits in Mass Spectrometry. Agilent Technologies Technical Note, publication 5990-7651EN. № 3. 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences