ИЗУЧЕНИЕ ХЛОРОПЛАСТНЫХ ГЕНОМОВ ОБРАЗЦОВ к-2278 И к-657 Aegilops aucheri Boiss.

Обложка
  • Авторы: Кулуев А.Р.1, Матниязов Р.Т.1, Кулуев Б.Р.1, Зуев Е.В.2, Чикида Н.Н.3, Чемерис А.В.1
  • Учреждения:
    1. Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук (ИБГ УФИЦ РАН)
    2. Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР), Санкт-Петербург, Россия
    3. Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР)
  • Выпуск: Том 145, № 3 (2025)
  • Страницы: 244-253
  • Раздел: Статьи
  • Статья получена: 21.09.2025
  • Статья опубликована: 15.06.2025
  • URL: https://kazanmedjournal.ru/0042-1324/article/view/690979
  • DOI: https://doi.org/10.31857/S0042132425030058
  • EDN: https://elibrary.ru/homvvs
  • ID: 690979

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Секвенирование хлоропластных геномов дает новые данные для филогенетических исследований спорных видов трибы пшеницевых. Одним из таких является Aegilops aucheri Boiss., считающийся подвидом Ae. speltoides Tausch. Были секвенированы и аннотированы хлоропластные геномы образцов к-2278 и к-657 Ae. aucheri различного географического происхождения, что дополнило картину филогенетического положения этого вида эгилопса. Размер пластомов у обоих образцов
составил 135668 п.н. Филогенетическое древо, построенное на основе данных полных нуклеотидных последовательностей хлоропластных геномов семи различных образцов Ae. aucheri (пять из которых были ранее секвенированы нами), показало отдельное от Ae. speltoides расположение на древе Ae. aucheri. В связи с полученными данными обсуждается вопрос о видовом статусе Ae. aucheri.

Об авторах

А. Р. Кулуев

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра
Российской академии наук (ИБГ УФИЦ РАН)

Email: vladimir.v.bobrov@gmail.com
Россия, Уфа, Россия

Р. Т. Матниязов

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра
Российской академии наук (ИБГ УФИЦ РАН)

Email: kuluev.azat91@yandex.ru
Россия, Уфа, Россия

Б. Р. Кулуев

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра
Российской академии наук (ИБГ УФИЦ РАН)

Email: kuluev.azat91@yandex.ru
Россия, Уфа, Россия

Е. В. Зуев

Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР), Санкт-Петербург, Россия

Email: kuluev.azat91@yandex.ru
Россия, Санкт-Петербург, Россия

Н. Н. Чикида

Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР)

Email: kuluev.azat91@yandex.ru
Россия, Санкт-Петербург, Россия

А. В. Чемерис

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра
Российской академии наук (ИБГ УФИЦ РАН)

Автор, ответственный за переписку.
Email: kuluev.azat91@yandex.ru
Россия, Уфа, Россия

Список литературы

  1. Бадаева Е.Д., Зощук С.А., Чикида Н.Н. и др. Молекулярно-генетическое исследование эволюции геномов диплоидных и полиплоидных видов Aegilops L. // Цитология. 1999. Т. 41 (12). С. 1055–1056.
  2. Белоусова М.Х., Чикида Н.Н. Характеристика эгилопсов секции Sitopsis по морфобиологическим признакам // Изв. Дагестанского ГАУ. 2019. T. 3 (3). С. 18–23.
  3. Гончаров Н.П. Сравнительная генетика пшениц и их сородичей // Новосибирск: Академ. изд-во “Гео”, 2012. 523 с.
  4. Гончаров Н.П., Коновалов А.А. Наследование глюкозофосфатизомеразы, остистости, опушения колоса и типа развития у Aegilops speltoides и Aegilops aucheri // Генетика. 1996. Т. 32 (5). С. 656–662.
  5. Горюнова С.В., Чикида Н.Н., Кочиева Е.З. Молекулярный анализ филогенетических отношений диплоидных видов эгилопса секции Sitopsis // Генетика. 2008. Т. 44 (1). С. 137–141.
  6. Жуковский П.М. Критико-систематический обзор видов рода Aegilops L. // Сб. науч. тр. по прикл. ботанике, генетике и селекции. 1928. Т. 18 (1). С. 417–609.
  7. Кулуев А.Р., Матниязов Р.Т., Кулуев Б.Р. и др. Секвенирование и аннотация хлоропластного генома Triticum militinae – “естественного мутанта” тетраплоидной пшеницы Triticum timopheevii Zhuk. // Генетика. 2024. Т. 60 (8). С. 118–121.
  8. Baidouri M., Murat F., Veyssiere M. et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum) // New Phytologist. 2017. V. 213 (3). P. 1477–1486.
  9. Belyayev A., Kalendar R., Brodsky L. et al. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat // Mobile DNA. 2010. V. 1 (6). P. 1–16.
  10. Belyayev A., Raskina O. Chromosome evolution in margi- nal populations of Aegilops speltoides: causes and consequences // Ann. Botan. 2013. V. 111 (4). P. 531–538.
  11. Bernhardt N., Brassac J., Dong X. et al. Genome-wide sequence information reveals recurrent hybridization among diploid wheat wild relatives // Plant J. 2020. V. 102 (3). P. 493–506.
  12. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30 (3). P. 2114–2120.
  13. Demir P., Onde S., Severcan F. Phylogeny of cultivated and wild wheat species using ATR–FTIR spectroscopy // Spectrochim. Acta Part A Mol. Biomol. Spectr. 2015. V. 135. P. 757–763.
  14. Edler D., Klein J., Antonelli A., Silvestro D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML // Methods Ecol Evol. 2021. V. 12 (2). P. 373–377.
  15. von Eig A. Monographisch-Kritische Ubersicht der Gattung. Aegilops. Repertorium specierum novarum regni vegetablis. Beihefte. Berlin: Im Selbstverlag, 1929. B. 55. 228 p.
  16. Feldman M., Levy A.A. Origin and evolution of wheat and related Triticeae species // Alien introgression in wheat / Eds Molnár-Láng, M., Ceoloni, C., Doležel, J. Cham: Springer, 2015. P. 21–76.
  17. Graham D.E. The isolation of high molecular weight DNA from whole organisms of large tissue masses // Anal. Biochem. 1978. V. 78. P. 673–678.
  18. Katoh K., Standley, D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Mol. Biol. Evol. 2013. V. 30 (4). P. 772—780.
  19. Kimber G., Feldman M. Wild wheats: an introduction // Special Report 353. College of Agriculture, Columbia. Missouri, USA. 1987. P. 1–142.
  20. Kuluev A.R., Matniyazov R.T., Kuluev B.R. et al. Complete chloroplast genomes of five Aegilops aucheri Boiss. accessions having different geographical origins // Mitochondrial DNA Part A. 2025. V. 35 (3–4). P. 119–125.
  21. Letunic I., Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool // Nucl. Acids Res. 2024. V. 52 (W1). P. W78–W82.
  22. Li H., Handsaker B., Wysoker A. et al. The sequence alignment/map format and samtools // Bioinformatics. 2009. V. 25 (16). P. 2078–2079.
  23. Li L.-F., Zhang Z.-B., Wang Z.-H. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome // Mol. Plant. 2022. V. 15 (3). P. 488–503.
  24. Luo M.C., Deal K.R., Yang Z.L. et al. Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes // Theor. Appl. Genet. 2005. V. 111. P. 1098–1106.
  25. McIntosh R.A., Dubcovsky J., Rogers W.J. et al. Catalogue of gene symbols for wheat: 2009 Supplement // Ann. Wheat Newslet. 2009. V. 55. P. 256–278.
  26. Miki Y., Yoshida K., Mizuno N. et al. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops // DNA Res. 2019. V. 26 (2). P. 171–182.
  27. Milne I., Stephen G., Bayer M. et al. Using Tablet for visual exploration of second-generation sequencing data // Brief. Bioinform. 2013. V. 14 (2). P. 193–202.
  28. Niranjana M. Gametocidal genes of Aegilops: segregation distorters in wheat–Aegilops wide hybridization // Genome. 2017. V. 60 (8). P. 639–647.
  29. Okonechnikov K., Golosova O., Fursov M., the UGENE team. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. 2012. V. 28 (8). P. 1166–1167.
  30. Quinlan A.R., Hall I.M. Bedtools: a flexible suite of utilities for comparing genomic features // Bioinformatics. 2010. V. 26 (6). P. 841–842.
  31. Raskina O., Belyayev A., Nevo E. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations // PNAS USA. 2004. V. 101 (41). P. 14818–14823.
  32. Sears E.R. Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae // Univ. Missouri Agric. Exp. Stn. Res. Bull. 1941. V. 337. P. 1–20.
  33. Shams I., Raskina O. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch. (Poaceae, Triticeae) // Protoplasma. 2018. V. 255. P. 1023–1038.
  34. Shi C., Hu N., Huang H. et al. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing // PLoS One. 2012. V. 7 (2). P. e31468.
  35. Shi L., Chen H., Jiang M. et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer // Nucl. Acids Res. 2019. V. 47 (W1). P. W65–W73.
  36. van Slageren M.W. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach.) Eig (Poaceae) // Wageningen Agric. Univ. Papers. 1994. V. 94 (7). P. 1–512.
  37. Waterhouse A.M., Procter J.B., Martin D.M. A. et al. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. // Bioinformatics. 2009. V. 25 (9). P. 1189–1191.
  38. Wu P., Xu C., Chen H. et al. NOVOWrap: an automated solution for plastid genome assembly and structure standardization // Mol. Ecol. Resour. 2021. V. 21 (6). P. 2177–2186.
  39. Yang Y., Cui L., Lu Z. et al. Genome sequencing of Sitopsis species provides insights into their contribution to the B subgenome of bread wheat // Plant Commun. 2023. V. 4 (4). P. 100567.
  40. Zhang W., Zhang M., Zhu X., et al. Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome // Theor. Appl. Genet. 2017. V. 131. P. 365–375.
  41. Zohary D., Imber D. Genetic dimorphism in fruit types in Aegilops speltoides // Heredity. 1963. V. 18 (2). P. 223–231.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025