Pathogenetic predictors of complications of the new coronavirus infection SARS-CoV-2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The pathological processes contributing to local (at the site of invasion) and systemic (thrombotic and fibrotic manifestations) complications of the new coronavirus infection are assessed. The features of virus internalization into cells, S-protein-dependent biochemical processes that form inflammatory and barrier reactions are analyzed. When studying the options for evading the virus from the immune control systems, attention is paid to the uncoupling of phagocytosis from lytic processes compartmentalized in lysosomes during the penetration of SARS-CoV-2 into cells, as well as to the multilevel suppression of the interferon response. COVID-19 is a powerful stress factor and is associated with an increase in cortisol, catecholamines and lactate in the blood. Under hypoxic conditions, deviations in the course of metabolic processes and the reception of signaling molecules are traced. The redistribution of ionized iron in the progression of the viral process and the formation of its complications is traced. An important role in the formation of cellular damage and tissue structure reorganization is played by the systemic inflammatory response and immunothrombosis, associated with the formation of extracellular neutrophil traps, as a form of apoptotic cell death. The significance of DNA methylation, the appearance of mobile genetic elements and non-coding RNA is estimated. The formation of structural changes is largely associated with fibrosis, realized in particular through the virus-activated epithelial-mesenchymal transition, local and systemic correction of which will reduce the risk of complications of the infectious process.

Sobre autores

S. Chepur

State Scientific Research Testing Institute of Military Medicine

Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

N. Pluzhnikov

State Scientific Research Testing Institute of Military Medicine

Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

O. Chubar

State Scientific Research Testing Institute of Military Medicine

Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

L. Bakulina

Burdenko Voronezh State Medical University

Email: gniiivm_2@mil.ru
Voronezh, Russia

I. Litvinenko

Kirov Military Medical Academy

Email: gniiivm_2@mil.ru
Saint-Petersburg, Russia

M. Tjunin

State Scientific Research Testing Institute of Military Medicine

Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

I. Mjasnikova

State Scientific Research Testing Institute of Military Medicine

Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

V. Pugach

State Scientific Research Testing Institute of Military Medicine

Autor responsável pela correspondência
Email: gniiivm_2@mil.ru
Saint Petersburg, Russia

Bibliografia

  1. Андрусишина И.Н., Важничая Е.М., Донченко Е.А. и др. Средство для лечения перегрузки организма железом или гемахроматоза. Патент RU 2557959. Опуб. 27.07.2015 г.
  2. Усова Е.В., Копанцева М.Р., Егоров В.И. и др. Белки SNAl1 и SNAl2 – транскрипционные мастер-регуляторы эпителиально-мезенхимального перехода // Патол. физиол. эксперим. терап. 2015. Т. 59 (2). С. 76–87.
  3. Чепур С.В., Плужников Н.Н., Чубарь О.В. и др. Молочная кислота: динамика представлений о биологии лактата // Успехи соврем. биол. 2021. Т. 141 (3). С. 227–247.
  4. Черняк Б.В., Попова Е.Н., Приходько А.С. и др. COVID-19 и окислительный стресс // Биохимия. 2020. Т. 85 (12). С. 1816–1828.
  5. Шаварова Е.К., Казахмедов Э.Р., Алексеева М.В. и др. Роль антиоксидантной терапии у пациентов с новой коронавирусной инфекцией COVID-19 среднетяжелого и тяжелого течения // Инф. болезни. 2021. Т. 19 (1). С. 159–164.
  6. Abdelrahman Z., Li M., Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses // Front. Immunol. 2020. V. 11. P. 552909.
  7. Ackermann M., Anders H.-J., Bilyy R. et al. Patients with COVID-19: in the dark-NETs of neutrophils // Cell Death. Differ. 2021. V. 28 (11). P. 3125–3139.
  8. Akaike T., Suga M., Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO // Proc. Soc. Exp. Biol. Med. 1998. V. 217 (1). P. 64–73.
  9. Al-Beltagi S., Preda C.A., Goulding L.V. et al. Thapsigargin is a broad-spectrum inhibitor of major human respiratory viruses: coronavirus, respiratory syncytial virus and influenza A virus // Viruses. 2021. V. 13 (2). P. 234.
  10. Ali R.A., Gandhi A.A., Meng H. et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome // Nat. Commun. 2019. V. 10 (1). P. 1916.
  11. Al-Kuraishy H.M., Al-Gareeb A.I., Qusti S. et al. COVID-19-induced dysautonomia: a mеnace of sympathetic storm // ASN Neuro. 2021. V. 13. P. 17590914211057635.
  12. Amini A.A., Karimi J., Talebi S.S., Piri H. The association of COVID-19 and reactive oxygen species modulator 1 (ROMO 1) with oxidative stress // Chonnam. Med. J. 2022. V. 58 (1). P. 1–5.
  13. Amiri-Dashatan N., Koushki M., Parsamanesh N., Chiti H. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis // J. Invest. Med. 2022. V. 70 (3). P. 766–772.
  14. Anoop U.R., Verma K. Happy hypoxemia in COVID-19 – a neural hypothesis // ACS Chem. Neurosci. 2020. V. 11 (13). P. 1865–1867.
  15. Aomatsu K., Arao T., Sugioka K. et al. TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line // Invest. Ophthalmol. Vis. Sci. 2011. V. 52 (5). P. 2437–2443.
  16. Archer S., Sharp W., Weir E.K. Differentiating COVID-19 pneumonia from acute respiratory distress syndrome and high altitude pulmonary edema: therapeutic implications // Circulation. 2020. V. 142 (2). P. 101–104.
  17. Arman K., Dalloul Z., Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics // Gene. 2023. V. 861. P. 147232.
  18. Arrieta F., Martinez-Vaello V., Bengoa N. et al. Stress hyperglycemia and Osteocalcin in COVID-19 critically ill patients on artificial nutrition // Nutrients. 2021. V. 13 (9). P. 3010.
  19. Assiri A.M., Alamaa T., Elenezi F. et al. Unveiling the clinical spectrum of post-COVID-19 conditions: assessment and recommended strategies // Cureus. 2024. V. 16 (1). P. e52827.
  20. Atabati E., Dehghani-Samani A., Mortazavimoghaddam S.G. Association of COVID-19 and other viral infections with interstitial lung disease, pulmonary fibrosis, and pulmonary hypertension: a narrative review // Can. J. Respir. Ther. 2020. V. 56. P. 1–9.
  21. Aydemir M.N., Aydemir H.B., Korkmaz E.M. et al. Computationally predicted SARS-CoV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways // Gene Rep. 2021. V. 22. P. 101012.
  22. Barabutis N. Unfolded protein response in lung health and disease // Front. Med. 2020. V. 7. P. 344.
  23. Barbu E.A., Mendelsohn L., Samsel L., Thein S.L. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises // Cytokine. 2020. V. 127. P. 154933.
  24. Barriere G., Fici P., Gallerani G. et al. Epithelial mesenchymal transition: a double-edged sword // Clin. Trans. Med. 2015. V. 4. P. 14.
  25. Bartoszewski R., Dabrowski M., Jakiela B. et al. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs // Am. J. Physiol. Lung Cell Mol. Physiol. 2020. V. 319 (3). P. L444–L455.
  26. Battistelli C., Diederich M., Keane T.J. et al. Editorial: Molecular mechanisms and new therapeutic targets in epithelial to mesenchymal transition (EMT) and fibrosis // Front. Pharmacol. 2020. V. 10. P. 1556.
  27. Baum J., Duffy H.S. Fibroblasts and myofibroblasts: what are we talking about? // J. Cardiovasc. Pharmacol. 2011. V. 57 (4). P. 376–379.
  28. Bektemur G., Bozali K., Colak S. et al. Oxidative stress, DNA damage, and inflammation in COVID-19 patients // North Clin. Istanb. 2023. V. 10 (3). P. 335–340.
  29. Beltrán-Garcia J., Osca-Verdegal R., Pallardo F. et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of antioxidant therapy in avoiding disease progression // Antioxidants. 2020. V. 9 (10). P. 936.
  30. Bergamaschi G., Borrelli de Andreis F., Aronico N. et al. Anemia in patients with COVID-19: pathogenesis and clinical significance // Clin. Exp. Med. 2021. V. 21 (2). P. 239–246.
  31. Berger J.M., Singh P., Khrimian L. et al. Mediation of the acute stress response by the skeleton // Cell Metab. 2019. V. 30 (5). P. 890–902.
  32. Bohr C., Hasselbalch K., Krogh A.S. Uber einen in biologischer Beziehung wichtigen Einfluβ, den die Kohlensäurespannung des blutes auf dessen Sauerstoffbindung übt // Skand. Arch. Physiol. 1904. V. 16 (2). P. 402–412.
  33. Borges L., Pithon-Curi T., Curi R., Hatanaka E. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps // Mediators Inflamm. 2020. V. 2020. P. 8829674.
  34. Borretzen A., Gravdal K., Haukaas S.A. et al. FOXC2 expression and epithelial-mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer // J. Pathol. Clin. Res. 2019. V. 5 (4). P. 272–286.
  35. Brown C.J., Ballabio A., Rupert J.I. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome // Nature. 1991. V. 349 (6304). P. 38–44.
  36. Burnham E.L., Janssen W.J., Riches D.W.H. et al. The fibroproliferative response in acute respiratory distress syndrome: mechanism and clinical significance // Eur. Respir. J. 2014. V. 43 (1). P. 276–285.
  37. Busana M., Gasperetti A., Giosa L. et al. Prevalence and outcome of silent hypoxemia in COVID-19 // Minerva Anestesiol. 2021a. V. 87 (3). P. 325–333.
  38. Busana M., Giosa L., Cressoni M. et al. The impact of ventilation-perfusion inequality in COVID-19: a computational model // J. Appl. Physiol. 2021b. V. 130 (3). P. 865–876.
  39. Cabana-Dominguez J., Arenas C., Cormand B., Fernández-Castillo N. MiR-9, miR-153 and miR-124 are down-regulated to cocaine in a dopaminergic cell model and may contribute to cocaine dependence // Transl. Psychiatry. 2018. V. 8. P. 173.
  40. Cabrera-Benitez N.E., Laffey J.G., Parotto M. et al. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome // Anesthesiology. 2014. V. 121 (1). P. 189–198.
  41. Cajanding R.J.M. Silent hypoxia in COVID-19 pneumonia: state of knowledge, pathophysiology, mechanisms, and management // AACN Adv. Crit. Care. 2022. V. 33 (2). P. 143–153.
  42. Cameron M.J., Bermejo-Martin J.F., Danesh A. et al. Human immunopathogenesis of severe acute respiratory syndrome (SARS) // Virus Res. 2008. V. 133 (1). P. 13–19.
  43. Cantuti-Castelvetri L., Ojha R., Pedro L.D. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. V. 370 (6518). P. 856–860.
  44. Capaldo C.T., Farkas A.E., Nusrat A. Epithelial adhesive junctions // F1000Prime Rep. 2014. V. 6. P. 1.
  45. Carpene G., Onorato D., Nocini R. et al. Blood lactate concentration in COVID-19: a systematic literature review // Clin. Chem. Lab. Med. 2021. V. 60 (3). P. 332–337.
  46. Carr A.C., Maggini S. Vitamin C and immune function // Nutrients. 2017. V. 9 (11). P. 1211.
  47. Cavezzi A., Troiani E., Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review // Clin. Pract. 2020. V. 10 (2). P. 1271.
  48. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin. Immunopathol. 2017. V. 39 (5). P. 529–539.
  49. Chen D., Tang H., Jiang H. et al. ACPA alleviates bleomycin-induced pulmonary fibrosis by inhibiting TGF-β-Smad2/3 signaling-mediated lung fibroblast activation // Front. Pharmacol. 2022. V. 13. P. 835979.
  50. Chen H.-C., Zhu Y.-T., Chen S.-Y., Tseng C.G. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition // Lab. Invest. 2012. V. 92 (5). P. 676–687.
  51. Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13 // Blood. 2010. V. 115 (3). P. 706–712.
  52. Chen L., Alam A., Pac-Soo A. et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo // Lab. Invest. 2021. V. 101 (9). P. 1166–1175.
  53. Chen L., Zhu Y., Zhou J. et al. Luteolin alleviates epithelial-mesenchymal transformation induced by oxidative injury in ARPE-19 cell via Nrf2 and AKT/GSK-3β pathway // Oxid. Med. Cell Longev. 2022. V. 2022. P. 2265725.
  54. Chen X., Wang K., Xing Y. et al. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity // Protein Cell. 2014. V. 5 (12). P. 912–927.
  55. Chen X., Zhao B., Qu Y. et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019 // Clin. Infect. Dis. 2020. V. 71 (8). P. 1937–1942.
  56. Cheng F.-Y., Lee Y.-H., Hsu Y.-H. et al. Promising therapeutic effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and FoxO1 // Aging (Albany NY). 2019. V. 11 (21). P. 9875–9892.
  57. Cheng R.Z. A hallmark of COVID-19: cytokine storm/oxidative stress and its integrative mechanism // Orthomolecular Medicine News Service. 2022. URL: https://orthomolecular.org/resources/omns/v18n03.shtml (дата обращения: 09.11.2024)
  58. Cherayil B.J. The role of iron in the immune response to bacterial infection // Immunol. Res. 2011. V. 50 (1). P. 1–9.
  59. Cheresh P., Kim S.-J., Tulasiram S., Kamp D.W. Oxidative stress and pulmonary fibrosis // Biochim. Biophys. Acta. 2013. V. 1832 (7). P. 1028–1040.
  60. Clausen T.M., Sandoval D.R., Spliid C.B. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2 // Cell. 2020. V. 183 (4). P. 1043–1057.
  61. Coco M., Buscemi A., Pennisi E. et al. Postural control and stress exposure in young men: changes in cortisol awakening response and blood lactate // Int. J. Environ. Res. Public Health. 2020. V. 17 (19). P. 7222.
  62. Colston J.T., Chandrasekar B., Freeman G.L. A novel peroxide-induced calcium transient regulates interleukin-6 expression in cardiac-derived fibroblasts // J. Biol. Chem. 2002.V. 277 (26). P. 23477–23483.
  63. Cottam E.M., Maier H.J., Manifava M. et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate // Autophagy. 2011. V. 7 (11). P. 1335–1347.
  64. Cubillo E., Diaz-Lopez A., Cuevas E.P. et al. E47 and Id1 interplay in epithelial-mesenchymal transition // PLoS One. 2013. V. 8 (3). P. e59948.
  65. Dai X., Xin Y., Xu W. et al. CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells // Sci. China Life Sci. 2021. V. 64 (4). P. 563–574.
  66. Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. V. 370 (6518). P. 861–865.
  67. Das D.K., Engelman R.M., Liu X. et al. Oxygen-derived free radicals and hemolysis during open heart surgery // Mol. Cell Biochem. 1992. V. 111 (1–2). P. 77–86.
  68. Daskou M., Abadi L.F., Gain C. et al. The role of the NRF2 pathway in the pathogenesis of viral respiratory infections // Pathogens. 2024. V. 13 (1). P. 39.
  69. Davies J.P., Sivadas A., Keller K.R. et al. SARS-CoV-2 nonstructural proteins 3 and 4 tune the unfolded protein response // bioRxiv. 2023. V. 2023. P. 537917.
  70. De Vuono S., Cianci P., Berisha S. et al. The PaCO2/FiO2 ratio as outcome predictor in SARS-CoV-2 related pneumonia: a retrospective study // Acta Biomed. 2022. V. 93 (5). P. e202256.
  71. Devaraj V., Bose B. Morphological state transition dynamics in EGF-induced epithelial to mesenchymal transition // J. Clin. Med. 2019. V. 8 (7). P. 911.
  72. Dhont S., Derom E., Van Braeckel E. et al. The pathophysiology of “happy” hypoxemia in COVID-19 // Respir. Res. 2020. V. 21 (1). P. 198.
  73. Di Gregorio J., Robuffo I., Spalletta S. et al. The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders // Front. Cell Dev. Biol. 2020. V. 8. P. 607483.
  74. Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy // Nat. Rev. Mol. Cell Biol. 2018. V. 19 (6). P. 349–364.
  75. Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A. et al. Pathological evidence of pulmonary thrombotic pneumonia in severe COVID-19 // J. Thromb. Haemost. 2020. V. 18 (6). P. 1517–1519.
  76. Dolskiy A.A., Gudymo A.S., Taranov O.S. et al. The tissue distribution of SARS-CoV-2 in transgenic mice with inducible ubiquitous expression of hACE2 // Front. Mol. Biosci. 2022. V. 8. P. 821506.
  77. Dyer L.A., Patterson C. Development of the endothelium: an emphasis on heterogeneity // Semin. Thromb. Hemost. 2010. V. 36 (3). P. 227–235.
  78. Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein // Biol. Direct. 2020. V. 15 (1). P. 19.
  79. Elbarbary R.A., Lucas B.A., Maquat L.E. Retrotransposons as regulators of gene expression // Science. 2016. V. 351 (6274). P. aac7247.
  80. Engreitz J.M., Sirokman K., McDonel P. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites // Cell. 2014. V. 159 (1). P. 188–199.
  81. Estornut C., Milara J., Bayarri M.A. et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis // Front. Pharmacol. 2022. V. 12. P. 794997.
  82. Evans W.H., Martin P.E.M. Gap junctions: structure and function (Review) // Mol. Membr. Biol. 2002. V. 19 (2). P. 121–136.
  83. Fan H., Yang F., Xiao Z. et al. Lactylation: novel epigenetic regulatory and therapeutic opportunities // Am. J. Physiol. Endocrinol. Metab. 2023. V. 324 (4). P. E330–E338.
  84. Fan Q., Qiu M.T., Zhu Z. et al. Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway // Oncol. Rep. 2015. V. 34 (4). P. 1787–1794.
  85. Fang J.S., Hultgren N.W., Hughes C.W. Regulation of partial reversible endothelial-to-mesenchymal transition in angiogenesis // Front. Cell Dev. Biol. 2021. V. 9. P. 702021.
  86. Feschotte C. Transposable elements and the evolution of regulatory networks // Nat. Rev. Genet. 2008. V. 9 (5). P. 397–405.
  87. Ferdousi M., Finn D.P. Stress-induced modulation of pain: role of the endogenous opioid system // Prog. Brain Res. 2018. V. 239. P. 121–177.
  88. Ferrara J.L. Cytokine dysregulation as a mechanism of graft versus host disease // Curr. Opi. Immunol. 1993. V. 5 (5). P. 794–799.
  89. Forrest M.P., Waite A.J., Martin-Rendon E., Blake D.J. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation // PLoS One. 2013. V. 8 (8). P. e73169.
  90. Förster C. Tight junctions and the modulation of barrier function in disease // Histochem. Cell Biol. 2008. V. 130 (1). P. 55–70.
  91. Fouad L., Lafta F.M., Khashman B.M. Host`s DNA methylation alterations accompanying COVID-19 infection. A review article // Microb. Sci. Arch. 2023. V. 3 (3). P. 87–93.
  92. Franke W.W., Grund C., Kuhn C., Jackson B.W. Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments // Differentiation. 1982. V. 23 (1). P. 43–59.
  93. Fuchs E. Scratching the surface of skin development // Nature. 2007. V. 445 (7130). P. 834–842.
  94. Fulzele S., Sahay B., Yusufu I. et al. COVID-19 virulence in aged patients might be impacted by the host cellular microRNAs abundance/profile // Aging Dis. 2020. V. 11 (3). P. 509–522.
  95. Fung S.Y., Siu K.L., Lin H. et al. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1 // Cell Biosci. 2022. V. 12 (1). P. 36.
  96. Fung T.S., Liu D.X. Coronavirus infection, ER stress, apoptosis and innate immunity // Front. Microbiol. 2014. V. 5. P. 296.
  97. Gairola S., Sinha A., Kaundal R. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues // Inflammopharmacology. 2024. V. 32 (1). P. 287–305.
  98. Ganley I.G., Wong P.M., Gammoh N., Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest // Mol. Cell. 2011. V. 42 (6). P. 731–743.
  99. Ganz T. Hepcidin and iron regulation, 10 years later // Blood. 2011. V. 117 (17). P. 4425–4433.
  100. García-Sastre A., Biron C.A. Type I interferons and the virus-host relationship: a lesson in détente // Science. 2006. V. 312 (5775). P. 879–882.
  101. Gassen N.C., Niemeyer D., Muth D. et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-coronavirus infection // Nat. Commun. 2019. V. 10 (1). P. 5770.
  102. Gassen N.C., Papies J., Bajaj T. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals // Nat. Commun. 2021. V. 12 (1). P. 3818.
  103. Gelfand M.V., Hagan N., Tata A. et al. Neurpilin-1 functions as a VEGER2 co-receptor to guide developmental angiogenesis independent of ligand binding // Elife. 2014. V. 3. P. e03720.
  104. George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy // Lancet Respir. Med. 2020. V. 8 (8). P. 807–815.
  105. Glinka Y., Stoilova S., Mohammed N., Prudhomme G.J. Neuropillin-1 exerts co-receptor function for TGF-beta-1 on the membrane cancer cells and enhances responses to both latent and active TGF-beta // Carcinogenesis. 2011. V. 32 (4). P. 613–621.
  106. Goel S., Saheb Sharif-Askari F., Saheb Sharif Askari N. et al. SARS-CoV-2 switches “on” MAPK and NF-κB signaling via the reduction of nuclear DUSP1 and DUCP5 expression // Front. Pharmacol. 2021. V. 12. P. 631879.
  107. Gonzáles-Duarte A., Norcliffe-Kaufmann L. Is “happy hypoxia” in COVID-19 a disorder of autonomic interoception? A hypothesis // Clin. Auton. Res. 2020. V. 30 (4). P. 331–333.
  108. Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34 (9). P. 1977–1984.
  109. Greenburg G., Hay E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells // L. Cell Biol. 1982. V. 95 (1). P. 333–339.
  110. Gu W., Gan H., Ma Y. et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity // Virol. J. 2022. V. 19 (1). P. 49.
  111. Gubbi S., Nazari M.A., Taieb D. et al. Catecholamine physiology and its implications in patients with COID-19 // Lancet Diabet. Endocrinol. 2020. V. 8 (12). P. 978–986.
  112. Gubernatorova E.O., Gorshkova E.A., Polinova A.I., Drutskaya M.S. IL-6: relevance for immunopathology of SARS-CoV-2 // Cyt. Growth Fact. Rev. 2020. V. 53. P. 13–24.
  113. Gudowska-Sawczuk M., Mroczko B. The role of neuropilin-1 (NRP1) in SARS-CoV-2 infection: review // J. Clin. Med. 2021. V. 10 (13). P. 2772.
  114. Guo J., Yang Z., Jia Q. et al. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in rat silicosis model // Toxicol. Lett. 2019. V. 300. P. 59–66.
  115. Gupta Y., Maciorowski D., Medernach B. et al. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: natura nihil frustra facit // J. Cell. Biochem. 2022. V. 123 (3). P. 601–619.
  116. Haase V.H. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease // Kidney Int. 2009. V. 76 (5). P. 492–499.
  117. Habib H.M., Ibrahim S., Zaim A., Ibrahim W.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators // Biomed. Pharmacother. 2021. V. 136. P. 111228.
  118. Haller O., Kochs G., Weber F. The interferon response circuit: induction and suppression by pathogenic viruses // Virology. 2006. V. 344 (1). P. 119–130.
  119. Han J., Weisbrod R.M., Shao D. et al. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: glutathionylation of Rac1 in endothelial cells // Redox Biol. 2016. V. 9. P. 306–319.
  120. Han Y., Luo Y., Wang Y. et al. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway // Oncol. Lett. 2016. V. 11 (1). P. 753–759.
  121. Hanrahan K., O`Neill A., Prencipe M. et al. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer // Mol. Oncol. 2017. V. 11 (3). P. 251–265.
  122. Hao W., Yu T.-T., Zuo D.-Z. et al. Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting NF-κB and TGF-β1/Smad2/3 pathways // Exp. Lung Res. 2023. V. 49 (1). P. 205–219.
  123. Hartwell K.A., Muir B., Reinhardt F. et al. The Spemann organizer gene, goosecoid, promotes tumor metastasis // PNAS USA. 2006. V. 103 (50). P. 18969–18974.
  124. Hay E.D. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo // Epithelial-mesenchymal interactions: Proceedings of the 18th Hahnemann Symposium / Ed. by Freischmajer R., Billingham R. Baltimore: Williams and Wilkins. Co, 1968. P. 31–55.
  125. Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: immunopathology in COVID-19 // Arthr. Rheumatol. 2020. V. (7). P. 1059–1063.
  126. Henderson N.C., Rieder F., Wynn T.A. Fibrosis: from mechanisms to medicines // Nature. 2020. V. 587 (7835). P. 555–566.
  127. Hennet T., Richter C., Peterhans E. Tumor necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells // Biochem. J. 1993. V. 289 (Pt 2). P. 587–592.
  128. Herrmann J., Mori V., Bates J.H.T., Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia // Nat. Commun. 2020. V. 11 (1). P. 4883.
  129. Hibbs J.B., Westenfelder C., Taintor R. et al. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy // J. Clin. Invest. 1992. V. 89 (3). P. 867–877.
  130. Hoffman M., Klein-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. V. 181 (2). P. 271–280.e8.
  131. Hosseini A., Stojkov D., Fettrelet T. et al. Transcriptional insight of oxidative stress and extracellular traps in lung tissues of fatal COVID-19 cases // Int. J. Mol. Sci. 2023. V. 24 (3). P. 2646.
  132. Hou P., Wang X., Wang H. et al. The OEF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication // Autophagy. 2023. V. 19 (2). P. 551–569.
  133. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. V. 395 (10223). P. 497–506.
  134. Huang R., Xu M., Zhu H. et al. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2 // Nat. Biotechnol. 2021. V. 39 (6). P. 747–753.
  135. Huoman J., Sayyab S., Apostolou E. et al. Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 in vivo and in vitro // Epigenetics. 2022. V. 17 (13). P. 1875–1891.
  136. Huoman J., Sayyab S., Apostolou E. et al. Mild SARS-CoV-2 infection modifies DNA methylation of peripheral blood mononuclear cells from COVID-19 convalescents // MedRxiv. ID: ppzbmed-10.1101.2021. 07.05.21260014.
  137. Ibrahim Fouad G., R. Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats // Mol. Cell. Biochem. 2021. V. 476 (9). P. 3433–3448.
  138. Ihara H., Mitsuishi Y., Kato M. et al. Nintedanib inhibits epithelial-mesenchymal transition in A459 alveolar epithelial cells through regulation of the TGF-β/Smad pathway // Respir. Investig. 2020. V. 58 (4). P. 275–284.
  139. Ito J., Sugimoto R., Nakaoka H. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses // PLoS Genet. 2017. V. 13 (7). P. e1006883.
  140. Ivanov A.V., Bartosch B., Isaguliants M.G. Oxidative stress in infection and consequent disease // Oxid. Med. Cell Longev. 2017. V. 2017. P. 3496043.
  141. Jeon M.J., Kim W.G., Lim S. et al. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells // Mol. Cell Endocrinol. 2016. V. 419. P. 113–123.
  142. Jiang J.C., Upton K.R. Human transposons are an abundant supply of transcription factor binding sites and promoter activities in breast cancer cell lines // Mob. DNA. 2019. V. 10 (1). P. 16.
  143. Jo M., Lester R.D., Montel V. et al. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling // J. Biol. Chem. 2009. V. 284 (34). P. 22825–22833.
  144. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs // RNA. 2014. V. 20 (7). P. 959–976.
  145. Kalluri R., Neilson E.G. Epithelial-mesenchymal transition and its implications for fibrosis // J. Clin. Invest. 2003. V. 112 (12). P. 1776–1784.
  146. Karakike E., Giamarellos-Bourboulis E.J., Kyprianou M. et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis // Crit. Cara Med. 2021. V. 49 (12). P. 2042–2057.
  147. Karla R.S., Kandimalla R. Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection // Sign. Transduct. Target Ther. 2021. V. 6 (1). P. 39.
  148. Keller C., Böttcher-Friebertshäuser E., Lohoff M. TMPRSS2, a novel host-directed drug target against SARS-CoV-2 // Signal Transduct. Target Ther. 2022. V. 7 (1). P. 251.
  149. Kennedy C.C., Brown E.E., Abutaleb N.O., Truskey G.A. Development and application of endothelial cells derived from pluripotent stem cells in microphysiological systems models // Front. Cardiovasc. Med. 2021. V. 8. P. 625016.
  150. Khan P., Manna A., Saha S. et al. Aspirin inhibits epithelial-mesenchymal transition and migration of oncogenic K-ras-expressing non-small cell lung carcinoma cells by down-regulating E-cadherin repressor Slug // BMC Cancer. 2016. V. 16. P. 39.
  151. Kharazmi A., Nielsen H., Rechnitzer C., Bendtzen K. Interleukin 6 primes human neutrophil and monocyte oxidative burst response // Immunol. Lett. 1989. V. 21 (2). P. 177–184.
  152. Khomich O.A., Kochetkov S.N., Bartosch B., Ivanov A.V. Redox biology of respiratory viral unfections // Viruses. 2018. V. 10 (8). P. 392.
  153. Kiesslich T., Pichler M., Neureiter D. Epigenetic control of epithelial-mesenchymal transition in human cancer // Mol. Clin. Oncol. 2013. V. 1 (1). P. 3–11.
  154. Kim D.H., Xing T., Yang Z. et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview // J. Clin. Med. 2017. V. 7 (1). P. 1.
  155. Kim H., Jun I., Yoon J.S. et al. Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure // Pflüg. Arch. 2015. V. 467 (11). P. 2243–2256.
  156. Koch B.F. SARS-CoV-2 and human retroelements: a case for molecular mimicry? // BMC Genom Data. 2022. V. 23 (1). P. 27.
  157. Kobayashi S., Nishimura M., Yamomoto M. et al. Relationship between breathlessness and hypoxic and hypercapnic ventilatory response in patients with COPD // Eur. Respir. J. 1996. V. 9 (11). P. 2340–2345.
  158. Kong D., Wang Z., Sarkar S.H. et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells // Stem Cells. 2008. V. 26 (6). P. 1425–1435.
  159. Kunzelmann K., Nilins B., Owsianik G. et al. Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramlase // Pflüg Arch. 2014. V. 466 (3). P. 407–414.
  160. Kurt E., Bahadirli S. Prognostic value of blood gas lactate levels among COVID-19 patients who visited to emergency department // J. Health Sci. Med. 2021. V. 4 (4). P. 493–497.
  161. Kusaczuk M., Bartoszewicz M., Cechowska-Pasko M. Phenylbutyric acid: simple structure – multiple effects // Curr. Pharm. Des. 2015. V. 21 (16). P. 2147–2166.
  162. Kyuno D., Takasawa A., Kikuchi S. et al. Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells // Biochim. Biophys. Acta Biomembr. 2021. V. 1863 (3). P. 183503.
  163. Lage S.L., Amaral E.P., Hilligan K.L. et al. Persistent oxidative stress and inflammasome activation in CDhighCD16 monocites from COVID-19 patients // Front. Immunol. 2022. V. 12. P. 799558.
  164. Lai X., Li Q., Wu F. et al. Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming // Front. Cell Dev. Biol. 2020. V. 8. P. 760.
  165. Lai Y.-J., Chao C.-H., Liao C.-C. et al. Epithelial-mesenchymal transition induced by SARS-CoV-2 required transcriptional upregulation of Snail // Am. J. Cancer Res. 2021. V. 11 (5). P. 2278–2290.
  166. Lanser L., Burkert F.R., Bellmann-Weiler R. et al. Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19 // Metabolites. 2021. V. 11 (10). P. 653.
  167. Lechowicz K., Droźdźal S., Machaj F. et al. COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection // J. Clin. Med. 2020. V. 9 (6). P. 1917.
  168. Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives // Nature. 2020. V. 582 (7813). P. 469.
  169. Lee C.H. Reversal of epithelial-mesenchymal transition by natural anti-inflammatory and pro-resolving lipids // Cancers. 2019. V. 11 (12). P. 1841.
  170. Lee K., Nelson C.M. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis // Int. Rev. Cell Mol. Biol. 2012. V. 294. P. 171–221.
  171. Lee Y.Y., Park H.H., Park W. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2- mediated neutrophil activities and cytokine storm // Biomaterials. 2021. V. 267. P. 120389.
  172. Leisman D.E., Mehta A., Thompson B.T. et al. Alveolar, endothelial, and organ injury marker dynamics in severe COVID-19 // Am. J. Respir. Crit. Care Med. 2022. V. 205 (5). P. 507–519.
  173. Li C., Wang R., Wu A. et al. SARS-CoV-2 as potential microRNA sponge in COVID-19 patients // BMC Med. Genomics. 2022. V. 15 (Suppl. 2). P. 94.
  174. Li H., Xu L., Zhao L. et al. Insulin-like growth factor-I induces epithelial to mesenchymal transition via GSK-3β and ZEB2 in the BGC-823 gastric cancer cell line // Oncol. Lett. 2015. V. 9 (1). P. 143–148.
  175. Li L., Zhuang Y., Zhao X., Li X. Long non-coding RNA in neuronal development and neurological disorders // Front. Genet. 2019. V. 9. P. 744.
  176. Li L.F., Kao K.C., Liu Y.Y. et al. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway // J. Cell Mol. Med. 2017. V. 21 (11). P. 2937–2949.
  177. Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26 (6). P. 842–844.
  178. Liberale L., Holy E.W., Akhmedov A. et al. Interleukin-1β mediates arterial thrombus formation via NET-associated tissue factor // J. Clin. Med. 2019. V. 8 (12). P. 2072.
  179. Lillie F.R. The development of the chick – an introduction to embryology. New York: Henry Holt and Co. 1908. 472 p.
  180. Lim D.H., Maher E.R. DNA methylation: a form of epigenetic control of gene expression // Obstetr. Gynaecol. 2010. V. 12. P. 37–42.
  181. Lim S., Zhang M., Chang T.L. ACE2-independent alternative receptors for SARS-CoV-2 // Viruses. 2022. V. 14 (11). P. 2535.
  182. Lippi G., Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019 // Hematol. Transfus. Cell Ther. 2020. V. 42 (2). P. 116–117.
  183. Liu Q.L., Luo M., Huang C. et al. Epigenetic regulation of epithelial to mesenchymal transition in the cancer metastatic cascade: implications for cancer therapy // Front. Oncol. 2021. V. 11. P. 657546.
  184. Liu X., Li T., Chen et al. Role and intervention of PAD4 in NETs in acute respiratory distress syndrome // Respir. Res. 2024. V. 25 (1). P. 63.
  185. Liu X., Xiong W., Ye M. et al. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets // Signal Transduct. Target Ther. 2023. V. 8 (1). P. 441.
  186. Loh C.-Y., Chai J.Y., Tang T.F. et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challen- ges // Cells. 2019. V. 8 (10). P. 1118.
  187. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis // Sci. Rep. 2021. V. 11. P. 16144.
  188. López-Novoa J.M., Nieto M.A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression // EMBO Mol. Med. 2009. V. 1 (6–7). P. 303–314.
  189. Lovisa S. Epithelial-to-mesenchymal transition in fibrosis: concepts and targeting strategies // Front. Pharmacol. 2021. V. 12. P. 737570.
  190. Lynch J.P., White E., Flaherty K. Corticosteroids in idiopathic pulmonary fibrosis // Curr. Opin. Pulm. Med. 2001. V. 7 (5). P. 298–308.
  191. Maghsadi Z, Azadmehr A., Moghadamnia A.A. et al. N-acetylcysteine attenuated pulmonary fibrosis induced bleomycin via immunomodulation responses // Res. Pharm. Sci. 2023. V. 18 (2). P. 177–184.
  192. Mahler D.A., Murray J.A., Waterman L.A. et al. Endogenous opioids modify dyspnoea during treadmill exercise in patients with COPD // Eur. Respir. J. 2009. V. 33 (4). P. 771–777.
  193. Mantlo E., Bukreyeva N., Maruyama J. et al. Antiviral activities of type I interferons to SARS-CoV-2 infection // Antiviral Res. 2020. V. 179. P. 104811.
  194. Marik P.E., Bellomo R. Stress hyperglycemia: an essential survival response! // Crit. Care. 2013. V. 17 (2). P. 305.
  195. Marconi G.D., Fonticoli L., Rajan T.S. et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis // Cells. 2021. V. 10 (7). P. 1587.
  196. Martin-Rojas R.M., Chasco-Ganuza M., Casanova-Prieto S. et al. A mild deficiency of ADAMTS13 is associated with severity in COVID-19: comparison of the coagulation profile in critically and noncritically ill patients // Blood Coagul. Fibrinolysis. 2021. V. 32 (7). P. 458–467.
  197. Mayi B.S., Leibowitz J.A., Woods A.T. et al. The role of neuropilin-1 in COVID-19 // PLoS Pathog. 2021. V. 17 (1). P. e1009153.
  198. McComsey G.A., Yau L. Asymptomatic hyperlactataemia: predictive value, natural history and correlates // Antivir. Ther. 2004. V. 9 (2). P. 205–212.
  199. McDonald O.G., Wu H., Timp W. et al. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition // Nat. Struct. Mol. Biol. 2011. V. 18 (8). P. 867–874.
  200. McNally J.S., Saxena A., Cai H. et al. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium // Arterioscler. Thromb. Vasc. Biol. 2005. V. 25 (8). P. 1623–1628.
  201. Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. V. 395 (10229). P. 1033–1034.
  202. Menshawey R., Menshawey E., Alserr A.H.K., Abdelmassih A.F. Low iron mitigates viral survival: insights from evolution, genetics, and pandemics – a review of current hypothesis // Egypt. J. Med. Hum. Genet. 2020. V. 21 (1). P. 75.
  203. Meyer-Schaller N., Heck C., Tiede S. et al. Foxf2 plays role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration // Breast Cancer Res. 2018. V. 20 (1). P. 118.
  204. Milewska A., Zarebski M., Nowak P. et al. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells // J. Virol. 2014. V. 88 (22). P. 13221–13230.
  205. Milewska A., Nowak P., Owczarek K. et al. Entry of human coronavirus NL63 into the cell // J. Virol. 2018. V. 92 (3). P. e01933-17.
  206. Miripour Z.S., Sarrami-Forooshani R., Sanati H. et al. Real-time diagnosis of rective oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic // Biosens. Bioelectron. 2020. V. 165. P. 112435.
  207. Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge // Eur. Respir. J. 2020. V. 55 (6). P. 2001217.
  208. Montazersahed S., Hosseiniyan Khatabi S.M., Hejazi M.S. et al. COVID-19 infection: an overview on cytokine storm and related interventions // Virol. J. 2022. V. 19 (1). P. 92.
  209. Morin-Surun M.P., Boudinot E., Fournie-Zaluski M.C. et al. Control of breathing by endogenous opioid peptides: possible involvement in sudden death syndrome // Neurochem. Int. 1992. V. 20 (1). P. 103–107.
  210. Moustaqil M., Ollivier E., Chiu H.P. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species // Emerg. Microb. Infect. 2021. V. 10 (1). P. 178–195.
  211. Moutal A., Martin L., Boinon L. et al. SARS-CoV-2 spike protein co-opts VEGF-A/Neuropilin-1 receptor signsling to induce analgesia // Pain. 2021. V. 162 (1). P. 243–252.
  212. Moyret-Lalle C., Ruiz E., Puisieux A. Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeon” of breast cancer // World J. Clin. Oncol. 2014. V. 5 (5). P. 311–322.
  213. Muhl L., Folestad E.B., Gladh H. et al. Neuropilin 1 binds PDGF-D and is a co-receptor in PDGF-D-PDGFRβ signaling // J. Cell Sci. 2017. V. 130 (8). P. 1365–1378.
  214. Mukhopadhyay S., Sinha S., Mohapatra S.K. Analysis of transcriptomic data sets supports the role of IL-6 in NETosis and immunothrombosis in severe COVID-19 // BMC Genom. Data. 2021. V. 22 (1). P. 49.
  215. Naidu S.A.G., Clemens R.A., Naidu A.S. SARS-CoV-2 infection dysregulates host iron Ife)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, ferroptosis, inhibitors, anticoagulants, and iron-chelators in COVID-19 control // J. Diet. Suppl. 2023. V. 20 (2). P. 312–371.
  216. Nakao N., Kurokawa T., Nonami T. et al. Hydrogen peroxide induces the production of tumor necrosis factor-alpha in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase // Innate Immun. 2008. V. 14 (3). P. 190–196.
  217. Neeb Z.T., Ritter A.J., Chauhan L.V. et al. A potential role for SARS-CoV-2 small viral RNAs in targeting host microRNAs and modulating gene expression // Sci. Rep. 2022. V. 12 (1). P. 21694.
  218. Nemeth E., Rivera S., Gabayan V. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin // J. Clin. Invest. 2004. V. 113 (9). P. 1271–1276.
  219. Nemeth J., Schundner A., Quast K. et al. A novel fibroblast reporter cell line for in vitro studies of pulmonary fibrosis // Front. Physiol. 2020. V. 11. P. 567675.
  220. Neufeldt C.J., Cerikan B., Cortese M. et al. SARS-CoV-2 infection induces pro-inflammatory cytokine response through cGAS-STING and NF-κB // Commun. Biol. 2022. V. 5 (1). P. 45.
  221. Nowotschin S., Hadjantonakis A.-K., Campbell K. The endoderm: a divergent cell lineage with many commonalities // Development. 2019. V. 146 (11). P. dev150920.
  222. Nusrat A., Parkos C.A., Bacarra A.E. et al. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium // J. Clin. Invest. 1994. V. 93 (5). P. 2056–2065.
  223. Ojo A.S., Balogun S.A., Williams O.T., Ojo O. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies // Pulm. Med. 2020. V. 2020. P. 6175964.
  224. Ono H., Imoto I., Kozaki K. et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation // Oncogene. 2012. V. 31 (47). P. 4923–4934.
  225. Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure // Blood. 2006. V. 107 (2). P. 528–534.
  226. Ottestad W., Søvik S. COVID-19 patients with respiratory failure: what can we learn from aviation medicine? // Br. J. Anaesth. 2020. V. 125 (3). P. e280–e281.
  227. Pal R., Banerjee M. Cortisol and COVID-19 – putting undue stress on the “Stress Hormone” // US Endocrinology. 2020. V. 16 (2). P. 66–67.
  228. Pandolfi L., Bozzini S., Frangipane V. et al. Neutrophil extracellular traps induce the epithelial-mesenchymal transition: implications in post-COVID-19 fibrosis // Front. Immunol. 2021. V. 12. Art. 663303.
  229. Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps // J. Cell. Biol. 2010. V. 191 (3). P. 677–691.
  230. Park H.H., Park W., Lee Y.Y. et al. Bioinspired DNase-I-coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation // Adv. Sci. 2021. V. 8 (19). P. e2103748.
  231. Pasquier J., Abu-Kaoud N., Al Thani H., Rafii A. Epithelial to mesenchymal transition in a clinical perspective // J. Oncol. 2015. V. 2015. P. 792182.
  232. Pastushenko I., Brisebarre A., Sifrim A. et al. Identification of the tumor transition states occurring during EMT // Nature. 2018. V. 556 (7702). P. 463–468.
  233. Pastushenko I., Blanpain C. EMT transition states during tumor progression and metastasis // Trends Cell Biol. 2019. V. 29 (3). P. 212–226.
  234. Patel P., West-Mays J., Kolb M. et al. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells // Matrix Biol. 2010. V. 29 (2). P. 97–106.
  235. Patra T., Meyer K., Geerling L. et al. SARS-CoV-2 spike protein promotes IL-6 transsignaling by activation of angiotensin II receptor signaling in epithelial cells // PLoS Pathog. 2020. V. 16 (12). P. e1009128.
  236. Pavlova E., Genova-Kalou P., Dyankov G. Susceptibility of SARS COV-2 nucleocapsid and spike proteins to reactive oxygen species and role in inflammation // Anal. Biochem. 2023. V. 670. P. 115137.
  237. Peng J., Xiao X., Li S. et al. Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOP-mediated autophagy pathway // Exp. Gerontol. 2023. V. 172. P. 112085.
  238. Perdomo J., Leung H.H.L. Immune thrombosis: exploring the significance of immune complexes and NETosis // Biology. 2023. V. 12 (10). P. 1332.
  239. Peyssonnaux C., Zinkernagel A.S., Datta V. et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens // Blood. 2006. V. 107 (9). P. 3727–3732.
  240. Pi P., Zeng Z., Zeng L. et al. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition // Front. Pharmacol. 2023. V. 14. P. 1218059.
  241. Pimentel-Muiños F.X., Boada-Romero E. Selective autophagy against membranous compartments: canonical and unconventional purposes and mechanisms // Autophagy. 2014. V. 10 (3). P. 397–407.
  242. Plowman T., Lagos D. Non-coding RNAs in COVID-19: emerging insights and current questions // Noncoding RNA. 2021. V. 7 (3). P. 54.
  243. Prasad V., Greber U.F. The endoplasmic reticulum unfolded protein response – homeostasis, cell death and evolution in virus infections // FEMS Microbiol. Rev. 2021. V. 45 (5). P. fuab016.
  244. Qin S., Jin P., Zhou Z. et al. The role of transposable elements in the origin and evolution of microRNAs in human // PLoS One. 2015. V. 10 (6). P. e0131365.
  245. Qu Y., Wang X., Zhu Y. et al. ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication // Front. Cell Dev. Biol. 2021. V. 9. P. 716208.
  246. Qvisth V., Hagström-Toft E., Enoksson S., Bolinder J. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of β-adrenoreceptor subtypes // J. Clin. Endocrinol. Metab. 2008. V. 93 (1). P. 240–246.
  247. Rabouw H.H., Langereis M.A., Knaap R.C.M. et al. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses // PLoS Pathog. 2016. V. 12 (10). P. e1005982.
  248. Raghu G., Collard H.R., Egan J.J. et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management // Am. J. Respir. Crit. Care Med. 2011. V. 183 (6). P. 788–824.
  249. Rahman A., Tabassum T., Araf Y. et al. Silent hypoxia in COVID-19: pathomechanism and possible management strategy // Mol. Biol. Rep. 2021. V. 48 (4). P. 3863–3869.
  250. Rapozzi V., Juarranz A., Habib A. et al. Is haem real target of COVID-19 // Photodiagn. Photodyn. Ther. 2021. V. 35. P. 102381.
  251. Reza J.N., Gavazzi I., Cohen J. Neuropilin-1 is expressed on adult mammalian dorsal root ganglion neurons and mediates semaphorin3a/collapsing-1-induced growth cone collapse by small diameter sensory afferents // Mol. Cell Neurosci. 1999. V. 14 (4–5). P. 317–326.
  252. Ribeiro A., Mendonça M., Sousa C.S. et al. Prevalence, presentation and outcomes of silent hypoxemia in COVID-19 // Clin. Med. Insights Circ. Respir. Pulm. Med. 2022. V. 16. P. 11795484221082761.
  253. Rowles D.L., Tsai Y.C., Greco T.M. et al. DNA methyltransferase DNMR3A associates with viral proteins and impact HSV-1 infection // Proteomics. 2015. V. 15 (12). P. 1968–1982.
  254. Ruivinho C., Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic // Front. Genet. 2023. V. 14. P. 1216890.
  255. Saito S., Zhuang Y., Shan B. et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway // PLoS One. 2017. V. 12 (10). P. e0186615.
  256. Salaris C., Scarpa M., Elli M. et al. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro // Nutrients. 2021. V. 13 (2). P. 328.
  257. Samuel C.E. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease // J. Biol. Chem. 2023. V. 299 (8). P. 104960.
  258. Sang E.R., Tian Y., Miller L.C., Sang Y. Epigenetic evolution of ACE2 and IL-6 genes: non-canonical interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates // Genes. 2021. V. 12 (2). P. 154.
  259. Santiago J.J., Dangerfield A.L., Rattan S.G. et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts // Dev. Dyn. 2010. V. 239 (6). P. 1573–1584.
  260. Santiago T.V., Edelman N.H. Opioids and breathing // J. Appl. Physiol. 1985. V. 59 (6). P. 1675–1685.
  261. Sa Ribero M., Jouvenet N., Dreux M., Nisole S. Interplay between SARS-CoV-2 and type I interferon response // PLoS Pathog. 2020. V. 16 (7). P. e1008737.
  262. Schönrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression // Adv. Biol. Regul. 2020. V. 77. P. 100741.
  263. Schulert G.S., Grom A.A. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies // Annu. Rev. Med. 2015. V. 66. P. 145–159.
  264. Sciacovelli M., Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer // FEBS J. 2017. V. 284 (19). P. 3132–3144.
  265. Seet L.F., Toh L.Z., Finger S.N. et al. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis // J. Mol. Med. 2016. V. 94 (3). P. 321–334.
  266. Sekhon K., Bucay N., Majid S. et al. MicroRNAs and epithelial-mesenchymal transition in prostate cancer // Oncotarget. 2016. V. 7 (41). P. 67597–67611.
  267. Setiawan F., Nurdianto A.R., Rahayu R.P. et al. Acute respiratory distress syndrome (ARDS) as the main causative death in coronavirus disease-19 (COVID-19) patients // Malaysian J. Med. Health Sci. 2023. V. 19. P. 159–165.
  268. Severinghaus J.W. Oxyhemoglobin dissociation curve for temperature and pH variation in human lood // J. Appl. Physiol. 1958. V. 12 (3). P. 485–486.
  269. Shaban M.S., Mayr-Buro C., Meier-Soelch J. et al. Thapsigargin: key to new host-directed coronavirus antivirals? // Trends Pharmacol. Sci. 2022. V. 43 (7). P. 557–568.
  270. Shan T., Li L.-Y., Yang J.-M., Cheng Y. Role and clinical implication of autophagy in COVID-19 // Virol. J. 2023. V. 20 (1). P. 125.
  271. Shen T., Wang T. Metabolic reprogramming in COVID-19 // Int. J. Mol. Sci. 2021. V. 22 (21). P. 11475.
  272. Sheng G., Thompson E., Newgreen D., Denker H.W. Twenty years on for the Epithelial-Mesenchymal Transition International Association (TEMTIA): an interview with co-founders Erik Thompson and Donald Newgree // Cells Tissues Organs. 2022. V. 211 (2). P. 252–260.
  273. Shepley-McTaggart A., Sagum C.A., Oliva I. et al. SARS-CoV-2 envelope (E) protein interacts with PDZ-domain-2 of host tight junctions protein ZO1 // PLoS One. 2021. V. 16 (6). P. e0251955.
  274. Sim J.-R., Shin D.H., Park P.-G. et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition // Cell Rep. 2022. V. 40 (3). P. 111117.
  275. Singer B.D. A practical guide to the measurement and analysis of DNA methylation // Am. J. Respir. Cell Mol. Biol. 2019. V. 61 (4). P. 417–428.
  276. Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis // J. Clin. Invest. 2020. V. 130 (11). P. 6151–6157.
  277. Soker S., Takashima S., Miao H.Q. et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor // Cell. 1998. V. 92 (6). P. 735–745.
  278. Song L., Wang D., Abbas G. et al. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A attenuating the immune defense of the interferon-stimulated genes // J. Biol. Chem. 2023. V. 299 (3). P. 102990.
  279. Soriano J.V., Pepper M.S., Nakamura T. et al. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells // J. Cell Sci. 1995. V. 108 (Pt 2). P. 413–430.
  280. Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury // Circ. Res. 2019. V. 125 (5). P. 507–519.
  281. South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo // J. Thromb. Haemost. 2018. V. 16 (1). P. 6–18.
  282. Stetson D.B., Medzhitov R. Antiviral defense: interferons and beyond // J. Exp. Med. 2006. V. 203 (8). P. 1837–1841.
  283. Stoker M., Perryman M. An epithelial scatter factor released by embryo // J. Cell Sci. 1985. V. 77. P. 209–223.
  284. Strich J.R., Ramos-Benitez M.J., Randazzo D. et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 patient plasma: a potential therapeutic // J. Infect. Dis. 2021. V. 223 (6). P. 981–984.
  285. Suarez-Carmona M., Lesage J., Cataldo D., Gilles C. EMT and inflammation: inseparable actors of cancer progression // Mol. Oncol. 2017. V. 11 (7). P. 805–823.
  286. Sulpice E., Plouet J., Berge M. et al. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity // Blood. 2008. V. 111 (4). P. 2036–2045.
  287. Sultan S., Sultan M. COVID-19 cytokine storm and novel truth // Med. Hypotheses. 2020. V. 144. P. 109875.
  288. Sun L., Fang J. Epigenetic regulation of epithelial-mesenchymal transition // Cell Mol. Life Sci. 2016. V. 73 (23). P. 4493–4515.
  289. Sun X., Wang T., Cai D. et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia // Cyt. Growth Factor Rev. 2020. V. 53. P. 38–42.
  290. Surabhi S., Jachmann L.H., Shumba P. et al. Hydrogen peroxide is crucial for NLRP3 inflammasome-mediated IL-β production and cell death in pneumococcal infections of bronchial epithelial cells // J. Innate Immun. 2022. V. 14 (3). P. 192–206.
  291. Suzuki A., Maeda T., Baba Y. et al. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model // Cancer Cell Int. 2014. V. 14 (1). P. 129.
  292. Swenson K.E., Hardin C.C. Pathophysiology of hypoxemia in COVID-19 lung disease // Clin. Chest. Med. 2023. V. 44 (2). P. 239–248.
  293. Szczepanski A., Owczarek K., Browska M. et al. Canine respiratory coronavirus, bovine coronavirus, and human coronavirus OC43: receptors and attachment factors // Viruses. 2019. V. 11 (4). P. 328.
  294. Taefehshokr N., Taefehshokr S., Hemmat N., Heit B. COVID-19: perspectives on innate immune evasion // Front. Immunol. 2020. V. 11. P. 580641.
  295. Tam S.Y., Wu V.W., Law H.K.W. Hypoxia-induced epithe- lial-mesenchymal transition in cancers: HIF-1α and beyond // Front. Oncol. 2020. V. 10. P. 486.
  296. Tan T., Khoo B., Mills E.G. et al. Association between high serum total cortisol concentrations and mortality from СOVID-19 // Lancet Diabet. Endocrinol. 2020. V. 8 (8). P. 659–660.
  297. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // J. Thromb. Haemost. 2020. V. 18 (4). P. 844-847.
  298. Teijaro J.R. Cytokine storms in infectious diseases // Semin. Immunopathol. 2017. V. 39 (5). P. 501–503.
  299. Terman G.W., Shavit Y., Lewis J.W. et al. Intrinsic mechanism of pain inhibition: activation by stress // Science. 1984. V. 226 (4680). P. 1270–1277.
  300. Teka O.F., Mezgebu L., Getahun C. et al. TET proteins and their role in regulation of DNA methylation // Asian J. Biomed. Pharmaceut. Sci. 2022. V. 12 (89). P. 121.
  301. Tian H., Wang L., Fu T. Ephedrine alleviates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition and restraining NF-κB signaling // J. Toxicol. Sci. 2023. V. 48 (10). P. 547–556.
  302. Thiam H.R., Wong S.L., Wagner D.D., Waterman C.M. Cellular mechanisms of NETosis // Annu. Rev. Cell Dev. Biol. 2020. V. 36. P. 191–218.
  303. Thomas S.R., Chen K., Keaney J.F. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via phosphoinositide 3-kinase-dependent signaling pathway // J. Biol. Chem. 2002. V. 277 (8). P. 6017–6024.
  304. Thuan D.T.B., Zayed H., Eid A.H. et al. A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis // Front. Immunol. 2018. V. 9. P. 1985.
  305. Torres-Ruiz J., Absalón-Aguilar A., Nuñez-Aguirre M. et al. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity // Cell. 2021. V. 10 (10). P. 2545.
  306. Treiman M., Caspersen C., Christensen S.B. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases // Trends Pharmacol. Sci. 1998. V. 19 (4). P. 131-135.
  307. Trendowski M. Exploring the inherent metastasis of leukemia to improve chemotherapeutic approaches // Cell Dev. Biol. 2014. V. 3 (2). P. 1000137.
  308. Tsujimoto M., Yokota S., Vilcek J., Weissmann G. Tumor necrosis factor provokes superoxide anion generation from neutrophils // Biochem. Biophys. Res. Commun. 1986. V. 137 (3). P. 1094–1100.
  309. Vallelian F., Schaer C.A., Deuel J.W. et al. Revisiting the putative role of heme as a trigger of inflammation // Pharmacol. Res. Perspect. 2018. V. 6 (2). P. e00392.
  310. Valles A.M., Boyer B., Badet J. et al. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line // PNAS USA. 1990. V. 87 (3). P. 1124–1128.
  311. van Otterdijk S.D., Mathers J.C., Strathdee G. Do age-related changes in DNA methylation play a role in the development of age-related diseases? // Biochem. Soc. Trans. 2013. V. 41 (3). P. 803–807.
  312. Veras F.P., Pontelli M.C., Silva C.M. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology // J. Exp. Med. 2020. V. 217 (12). P. e20201129.
  313. Vianello S., Lutoff M.P. In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture // BioRxiv. 2020. URL: https:// www.biorxiv.org/content/10.1101/2020.06.07.138883v3.full.pdf (дата обращения: 09.11.2024)
  314. Vitale-Cross L., Szalayova I., Scoggins A. et al. SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: сlinical implications // eBioMedicine. 2022. V. 78. P. 103981.
  315. Wang D., Li S., Chen Y. et al. Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway // J. Dermatol. Sci. 2023. V. 109 (2). P. 89-98.
  316. Wang X., Chen S., Shen T. et al. Trichostatin A reverses epithelial-mesenchymal transition and attenuates invasion and migration in MCF-7 breast cancer cells // Exp. Ther. Med. 2020. V. 19 (3). P. 1687–1694.
  317. Wang Y., Chen J., Ling M. et al. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation // J. Biol. Chem. 2015. V. 290 (3). P. 1422–1431.
  318. Wang Y., Luo L., Braun O.Ö. et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice // Sci. Rep. 2018. V. 8 (1). P. 4020.
  319. Wang Z., Li Y., Kong D., Sarkar F.H. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness // Curr. Drug Targets. 2010. V. 11 (6). P. 745–751.
  320. Wei C., Wan L., Yan Q. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry // Nat. Metab. 2020. V. (12). P. 1391–1400.
  321. Wei J.W., Huang K., Yang C., Kang C.S. Non-coding RNAs as regulators in epigenetics // Oncol. Rep. 2017. V. 37 (1). P. 3–9.
  322. Wei Z., Gao Y., Meng F. et al. iDMer: an integrative and mechanism-driven response system for identifying compound interventions for sudden virus outbreak // Brief. Bioinform. 2021. V. 22 (2). P. 976–987.
  323. Wenzhong L., Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system // Autoimmunity. 2021. V. 54 (4). P. 213–224.
  324. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected 12 January 2020 / WHO. URL: https://iris.who.int/ bitstream/handle/10665/332299/WHO-2019-nCoV-Clinical-2020.1-eng.pdf (дата обращения: 09.11.2024)
  325. Williams A.E., Chambers R.C. The mercurial nature of neutrophils: still an enigma in ARDS? // Am. J. Physiol. Lung Cell Mol. Physiol. 2014. V. 306 (3). P. L217–L230.
  326. Willis R.A., Nussler A.K., Fries K.M. et al. Induction of nitric oxide synthase in subset of murine pulmonary fibroblasts: effect on fibroblast interleukin-6 production // Clin. Immunol. Immunopathol. 1994. V. 71 (2). P. 231–239.
  327. Wollin L., Distler J.H.W., Redente E.F. et al. Potential nintedanib in treatment of progressive fibrosing lung diseases // Eur. Respir. J. 2019. V. 54 (3). P. 1900161.
  328. Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. V. 367 (6483). P. 1260–1263.
  329. Wu J., Shi Y., Pan X. et al. ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-limked ubiquitination of NEMO // Cell Rep. 2021. V. 34 (7). P. 108761.
  330. Wu Q., Hou X., Xia J. et al. Emerging roles of PDGF-D in EMT progression during tumorigenesis // Cancer Treat. Rev. 2013. V. 39 (6). P. 640–646.
  331. Xia H., Cao Z., Xie X. et al. Evasion of type I interferon by SARS-CoV-2 // Cell Rep. 2020, V. 33 (1). P. 108234.
  332. Xiao Y., Vermund S.H. DNA methylation in long COVID // Front. Virol. 2024. V. 4. P. 1371683.
  333. Xu J., Lamouille S., Derynck R. TGF-beta-induced epithelial to mesenchymal transition // Cell Res. 2009. V. 19 (2). P. 156–172.
  334. Xu L., Fukumura D., Jain R.K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF // J. Biol. Chem. 2002. V. 277 (13). P. 11368–11374.
  335. Xu Q., Zhang Q., Ishida Y. et al. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect // Oncotarget. 2017. V. 8 (6). P. 9557–9571.
  336. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir. Med. 2020. V. 8 (4). P. 420–422.
  337. Xue M., Feng L. The role of unfolded protein response in coronavirus infection and its implications for drug design // Front. Microbiol. 2021. V. 12. P. 808593.
  338. Yadav R., Momin A., Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases // Int. Immunopharmacol. 2023. V. 124 (Pt A). P. 110846.
  339. Yamamoto N., Kan-O K., Tatsuta M. et al. Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs // Sci. Rep. 2021. V. 11 (1). P. 7222.
  340. Yamamura S., Imai-Sumida M., Tanaka Y., Dahiya R. Interaction and cross-talk between non-coding RNAs // Cell Mol. Life Sci. 2018. V. 75 (3). P. 467–484.
  341. Yan Q., Zhang W., Wu Y. et al. KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2 // Oncotarget. 2015. V. 6 (28). P. 25402–25417.
  342. Yang L., Xie X., Tu Z. et al. The signal pathways and treatment of cytokine storm in COVID-19 // Signal Transduct. Target Ther. 2021. V. 6 (1). P. 255.
  343. Yang Y., Zhang L., Geng H. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists // Protein Cell. 2013. V. 4 (12). P. 951–961.
  344. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “cytokine storm” in COVID-19 // J. Infect. 2020. V. 80 (6). P. 607–613.
  345. Yi Z.Y., Feng L.J., Xiang Z., Yao H. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in hepatocellular carcinoma cells // J. Invest. Surg. 2011. V. 24 (2). P. 67–76.
  346. Yin Y., Liu X.Z., He X., Zhou L.Q. Exogenous coronavirus interacts with endogenous retrotransposon in human cells // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 609160.
  347. Yoo J.S., Sasaki M., Cho S.X., et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis // Nat. Commun. 2021. V. 12 (1). P. 6602.
  348. Yoshida K., Choisunirachon N., Saito T. et al. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumor cell line // Res. Vet. Sci. 2014. V. 97 (3). P. 521–526.
  349. Youn J.Y., Zhang Y., Wu Y. et al. Therapeutic application of estrogen for COVID-19: attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in epithelial cells // Redox Biol. 2021. V. 46. P. 102099.
  350. Yu M., Liu Y., Xu D. et al. Prediction of the development of pulmonary fibrosis using serial thin-section CT and clinical features in patients discharged after treatment for COVID-19 pneumonia // Korean J. Radiol. 2020. V. 21 (6). P. 746–755.
  351. Zeisberg M., Neilson E.G. Biomarkers for epithelial-mesenchymal transition // J. Clin. Invest. 2009. V. 119 (6). P. 1429–1437.
  352. Zhang L., Lei W., Wang X. et al. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibit TGF-β1-induced epithelial-to-mesenchymal transition and cell migration // FEBS Lett. 2010. V. 584 (22). P. 4646–4654.
  353. Zhang Y., Sun H., Pei R. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes // Cell Discov. 2021. V. 7 (1). P. 31.
  354. Zhao H., Qin H.Y., Cao L.F. et al. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis // Toxicol. Lett. 2015. V. 232 (1). P. 213–220.
  355. Zhu H., Chen C.Z., Sakamura S. et al. Mining of high throughput screening database reveals AP-I and autophagy pathways as potential targets for COVID-19 therapeutics // Sci. Rep. 2021. V. 11 (1). P. 6725.
  356. Zhu Y., Chen X., Liu X. NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond // Front. Immunol. 2022. V. 13. P. 838011.
  357. Ziegler C.G.K., Allon S.J., Nyquist S.K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues // Cell. 2020. V. 181 (5). P. 1016–1035.
  358. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. V. 5 (11). P. e138999.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025