To the Charged Surface Instability Calculation of a Stratified Fluid
- 作者: Belonozhko D.F.1
 - 
							隶属关系: 
							
- P.G. Demidov Yaroslavl State University
 
 - 期: 卷 88, 编号 3 (2024)
 - 页面: 383-391
 - 栏目: Articles
 - URL: https://kazanmedjournal.ru/0032-8235/article/view/675050
 - DOI: https://doi.org/10.31857/S0032823524030035
 - EDN: https://elibrary.ru/ZAZUUD
 - ID: 675050
 
如何引用文章
详细
The conditions for the development of instability of the charged surface of a stratified fluid in relation to an overload of surface charge are calculated analytically. A rule for selecting the roots of the dispersion equation is formulated to correctly describe the spectrum of wave motions on the free surface.
全文:
作者简介
D. Belonozhko
P.G. Demidov Yaroslavl State University
							编辑信件的主要联系方式.
							Email: belonozhko@mail.ru
				                					                																			                												                	俄罗斯联邦, 							Yaroslavl						
参考
- Chashechkin Yu.D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms, 2022, vol. 11, no. 8, pp. 402.
 - Chashechkin Y.D., Ochirov A.A. Free-surface two-dimensional periodic disturbances in various models of fluid // Dokl. RAN, 2023, vol. 513, no. 1, pp. 95–102.
 - Ochirov A.A., Chashechkin Y.D. Two-dimensional periodic waves in an inviscid continuously stratified fluid // Izv. RAN. Atmos.&Oceanic Phys., 2022, vol. 58, no. 5, pp. 450–458.
 - Makarenko N.I., Maltseva J.L., Cherevko A.A. Solitary waves in a two-layer fluid with piecewise exponential stratification // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1235–1245.
 - Chashechkin Y., Ochirov A., Lapshina K.Y. Surface waves along the interface of stably stratified liquids // Phys.-Chem. Kin. in Gas Dyn., 2022, vol. 23, iss. 6. http://chemphys.edu.ru/issues/2022-23-6/articles/1028/
 - Tonks L. A theory of liquid surface rupture by a uniform electric field // Phys. Rev., 1935, vol. 48, no. 6, pp. 562.
 - Frenkel Y.I. On Tonks’ theory of fluid surface breakup by a constant electric field in a vacuum // Zh. Exp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 347–350.
 - Taylor G.I., McEwan A.D. The stability of a horizontal fluid interface in a vertical electric field // J. of Fluid Mech., 1965, vol. 22, no. 1, pp. 1–15.
 - Fernández de La Mora J. The fluid dynamics of Taylor cones // Annu. Rev. Fluid Mech., 2007, vol. 39, pp. 217–243.
 - Zhang X., Xie L., Wang X., Shao Z., Kong B.Electrospinning super–assembly of ultrathin fibers from single-to multi-Taylor cone sites // Appl. Mater. Today, 2022, vol. 26, pp. 101272.
 - Landau L.D., Lifschitz E.M., Pitaevskii L.P. Electrodynamics of Continuous Media: Course of Theoretical Physics. Vol. 8. Elsevier Sci., 1995. 460 p.
 - Ochirov A.A., Chashechkin Y.D. Wave motion in a viscous homogeneous fluid with a surface electric charge // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1318–1327.
 - Grigor’ev A.I., Shiryaeva S.O., Koromyslov V.A. On some regularities in the implementation of the electrostatic instability of a charged liquid surface in a pool of finite dimensions // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1328–1340.
 - Vallis G.K. Atmospheric and Oceanic Fluid Dynamics. Cambridge: Univ. Press, 2017. 995 p.
 - Landau L.D., Lifschitz E.M. Fluid Mechanics. Course of Theoretical Physics. Vol. 6. Pergamon, 1987. 539 p.
 - Rosensweig R.E. Ferrohydrodynamics. Courier Corp., 2013. 368 p.
 - Le Méhauté B. An Introduction to Hydrodynamics and Water Waves. Berlin: Springer, 1976. 323 p.
 - Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon, 1961. 654 p.
 - Drazin P.G. Introduction to Hydrodynamic Stability. Cambridge: Univ. Press, 2002. vol. 32, 258 p.
 - Lavrentev M.A., Shabat B.V. Methods of the Theory of Function of Complex Variable. Moscow: Nauka, 1987, 544 p. (in Russian)
 
补充文件
				
			
						
						
						
						
					


