Биметаллические катализаторы в окислительном обессеривании углеводородных фракций (обзор)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Рассмотрены проблемы окислительного обессеривания модельных углеводородных смесей и реальных моторных топлив в присутствии биметаллических гетерогенных катализаторов. Значительное внимание уделено работам по различным методам получения гетерогенных биметаллических катализаторов с использованием разнообразных твердых носителей. Обсуждается проявление такими каталитическими системами синергизма окислительных процессов, связанного с различными свойствами металлов в биметаллических системах, в том числе появлением у этих систем кислотных функций.

Texto integral

Acesso é fechado

Sobre autores

Александр Анисимов

Московский государственный университет имени М. В. Ломоносова

Autor responsável pela correspondência
Email: sulfur45@mail.ru
ORCID ID: 0000-0001-9272-2913

химический факультет

Rússia, Москва, 119991

Аргам Акопян

Московский государственный университет имени М. В. Ломоносова

Email: sulfur45@mail.ru
ORCID ID: 0000-0001-6386-0006

химический факультет

Rússia, Москва, 119991

Наталья Синикова

Московский государственный университет имени М. В. Ломоносова

Email: sulfur45@mail.ru
ORCID ID: 0000-0001-7196-0082

химический факультет

Rússia, Москва, 119991

Олеся Гуль

Московский государственный университет имени М. В. Ломоносова

Email: sulfur45@mail.ru
ORCID ID: 0000-0001-6708-0058

химический факультет

Rússia, Москва, 119991

Bibliografia

  1. Mjalli F.S., Ahmed O.U., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M. Deep oxidative desulfurization of liquid fuels // Reviews in Chem. Engineering. 2014. V. 30. № 4. P. 337‒378. https://doi.org/10.1515/revce-2014-0001
  2. ГОСТ 32139-2019. Межгосударственный стандарт. Нефть и нефтепродукты. Определение содержания серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии.
  3. Hossain M.N., Park H.C., Choi H.S. A comprehensive review on catalytic oxidativedesulfurization of liquid fuel oil // Catalysts. 2019. V. 9. № 3. ID229. https://doi.org/10.3390/catal9030229
  4. Desai K., Dharaskar S., Khalid M., Gedam V. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review // Chem. Pap. 2022. V. 76. № 4. P. 1989–2028. https://doi.org/10.1007/s11696-021-02038-3
  5. Sikarwar P., Gosu V., Subbaramaiah V. An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels // Rev. Chem. Eng. 2019. V. 35. № 6. P. 669–705. https://doi.org/10.1515/revce-2017-0082
  6. Mohamed Magdy E.-S., Al-Yacoub Z.H., Vadakumar J.V. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria // Front. Microbiol., Sec. Microbiotechnology. 2015. V. 6. ID112 https://doi.org/10.3389/fmicb.2015.00112
  7. Malani R.S., Batghare A.H., Bhasarkar J.B., Moholkar V.S. Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: Review and analysis // Bioresour. Technol. Rep. 2021. V. 14. ID100668. https://doi.org/10.1016/j.biteb.2021.100668
  8. Li J., Yang Z., Li S., Jin Q., Zhao J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts // J. Ind. Eng. Chem. 2020. V. 82. P. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020
  9. Danmaliki G.I., Saleh T.A. Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated carbon // Chem. Eng. J. 2017. V. 307. P. 914–927. https://doi.org/10.1016/j.cej.2016.08.143
  10. Shah S.S., Ahmad I., Ahmad W., Ishaq M., Khan H. Deep desulphurization study of liquid fuels using acid treated activated charcoal as adsorbent // Energy Fuels. 2017. V. 31. P. 7867–7873. https://doi.org/10.1021/acs.energyfuels.7b00914
  11. Muhammad Nobi Hossain, Hoon Chae Park, Hang Seok Choi. A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil // Catalysts. 2019. V. 9. № 3. ID229. 10.3390/catal9030229' target='_blank'>https://doi: 10.3390/catal9030229
  12. Xian Bin Lim ab, Wee-Jun Ong. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy // Nanoscale Horiz. 2021. V. 6. P. 588–633 https://doi.org/10.1039/d1nh00127b
  13. Haruna A., Merican Z.A., Musa S.G. Recent advances in catalytic oxidative desulfurization of fuel oil: A review // J. Ind. Eng. Chem. 2022. V. 112. P. 20–36. https://doi.org/10.1016/j.jiec.2022.05.023
  14. Khalid H., Umar A., Saeed M.H., Nazir M.S., Akhtat T., Ikhlaq A., Ali Z., Hassan S.U. Advances in fuel oil desulfurization: a comprehensive review of polyoxometalate catalysts // J. Ind. Eng. Chem. 2025. V. 141. P. 32–45. http://doi.org/10.1016/j.jec.2024.06.043
  15. Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: A review // Catalysts. 2018. V. 8. № 9. ID344. https://doi.org/10.3390/catal8090344
  16. Liu F., Yu J., Qazi A.B., Zhang L., Liu X. Metal-based ionic liquids in oxidative desulfurization: a critical review // Environ. Sci. Technol. 2021. V. 55. № 3. P. 1419–1435. https://doi.org/10.1021/acs.est.0c05855
  17. Yuan B., Li X., Sun Y. A short review of aerobic oxidative desulfurization of liquid fuels over porous materials // Catalysts. 2022. V. 12. № 2. ID129. https://doi.org/10.3390/catal12020129
  18. Crucianelli M., Bizzarri B.M., Saladino R. SBA-15 anchored metal containing catalysts in the oxidative desulfurization process // Catalysts. 2019. V. 9. № 12. ID984. https://doi.org/10.3390/catal9120984
  19. Xiong J., Zhu W., Ding W., Yang L., Zhang M., Jiang W., Zhao Z., Li H. Hydrophobic mesoporous silica-supported heteropolyacid induced by ionic liquid as a high efficiency catalyst for the oxidative desulfurization of fuel // RSC Adv. 2015. V. 5. № 22. P. 16847–16855. https://doi.org/10.1039/C4RA14382E
  20. Duan Z., Bian H., Gao Z., Zhu L., Xia D. Green fuel desulfurization with β-cyclodextrin aqueous solution for thiophenic sulfides by molecular inclusion // Energy Fuels. 2019. V. 33. № 10. P. 9690–9701. https://doi.org/10.1021/acs.energyfuels.9b02349
  21. Nurwita A., Stawicka K., Trejda M. SBA-15 type mesoporous silica modified with vanadium as a catalyst for oxidative and extractive oxidative desulfurization processes // Materials. 2024. V. 17. № 16. ID4041. https://doi.org/10.3390/ma17164041
  22. Truong T.H., Vu D.C., Pham X.N. Direct synthesis of Cu–TiO2–SBA–16 photocatalysts and its application for the oxidative desulfurization of fuel oil model // Vietnam J. of Catalysis and Adsorption. 2024. V. 13. № 3. P. 36–41. https://doi.org/10.62239/jca.2024.055
  23. Moghadasi Z., Baghernia J. Preparation and identification of MCM-41 catalyst and its application in the oxidation reaction of sulfide to sulfoxide // Nanomaterials Chemistry. 2024. V. 2. № 1. P. 38–50. https://doi.org/10.22034/nc.2024.459131.1032
  24. Wang F., Xiao K., Shi L., Bing L., Han D., Wang G. Catalytic oxidative desulfurization of model fuel utilizing functionalized HMS catalysts: characterization, catalytic activity and mechanistic studies // React. Chem. Eng. 2021. V. 6. № 2. P. 289–296. https://doi.org/10.1039/D0RE00373E
  25. Ding Y., Wang J., Liao M., Li J., Zhang L., Guo J., Wu H. Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6 // Chem. Eng. J. 2021. V. 418. ID129470. https://doi.org/10.1016/j.cej.2021.129470
  26. Zou J., Lin Y., Wu S., Wu M., Yang C. Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulfurization // Sep. Purif. Technol. 2021. V. 264. ID118434. https://doi.org/10.1016/j.seppur.2021.118434
  27. Nawaf A.T., Abdulmajeed B.A. Design of oscillatory helical baffled reactor and dual functional mesoporous catalyst for oxidative desulfurization of real diesel fuel // Chem. Eng. Res. Des. 2024. V. 209. P. 193–209. https://doi.org/10.1016/j.cherd.2024.07.032
  28. Lu Y., Yue C., Liu B., Zhang M., Li Y., Yang W., Lin Y., Pan Y., Sun D., Liu Y. The encapsulation of POM clusters into MIL-101 (Cr) at molecular level: LaW10O36@ MIL-101 (Cr), an efficient catalyst for oxidative desulfurization // Microporous Mesoporous Mater. 2021. V. 311. ID110694. https://doi.org/10.1016/j.micromeso.2020.110694
  29. We S., He H., Cheng Y., Yang C., Zeng G., Kang L., Qian H., Zhu C. Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene // Fuel. 2017. V. 200. P. 11–21. https://doi.org/10.1016/j.fuel.2017.03.052
  30. Ahmadian M., Anbia M. Highly efficient oxidative desulfurization catalyzed by copper-based materials using hydrogen peroxide as oxidant // Fuel. 2022. V. 324. Pt. A. ID124471. https://doi.org/10.1016/j.fuel.2022.124471
  31. Guo H., Lu X., Zhang W., Zhang M., Zhao L., Zhou D., Xia Q. Highly efficient oxidation of various thioethers with molecular oxygen catalyzed by bimetallic SnMo-MOF // Mol. Catal. 2024. V. 569. ID114555. https://doi.org/10.1016/j.mcat.2024.114555
  32. Mokhtar W.N.A.W., Wan Abu Bakar W.A., Ali R., Kadir A.A.A. Development of bimetallic and trimetallic oxides doped on molybdenum oxide based material on oxidative desulfurization of diesel // Arab. J. Chem. 2018. V. 11. № 8. P. 1201–1208. https://doi.org/10.1016/j.arabjc.2016.04.020
  33. Otaghsaraei S.S., Kazemeini M., Hasannia S., Ekramipooya A. Deep oxidative desulfurization via rGOimmobilized tin oxide nanocatalyst: Experimental and theoretical perspectives // Adv. Powder Technol. 2022. V. 33. № 3. ID103499. https://doi.org/10.1016/j.apt.2022.103499
  34. Chen X., Luo J., Khan S., Shi R., Li P., Shi S., Hu J., Shi F. Thick pore walls mesoporous silicon composites based on phosphomolybdic acid: an efficient catalyst for oxidation desulfurization reaction // J. Phys. Chem. Solids. 2023. V. 173. ID111118. https://doi.org/10.1016/j.jpcs.2022.111118
  35. Said S., Abdelrahman A.A. Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound // J. Sol-Gel Sci. Technol. 2020. V. 95. P. 308–320. https://doi.org/10.1007/s10971-020-05332-w
  36. Boshagh F., Rahmani M., Rostami K., Yousefifar M. Key factors affecting the development of oxidative desulfurization of liquid fuels: a critical review // Energy Fuels. 2021. V. 36. № 1. P. 98–132. https://doi.org/10.1021/acs.energyfuels/c03396
  37. Yu L., Cui W.G., Zhang Q., Li Z.F., Shen Y., Hu T.L. Atomic layer deposition of nano-scale molybdenum sulfide within a metal–organic framework for highly efficient hydrodesulfurization // Mater. Adv. 2021. V. 2. № 4. P. 1294–1301. https://doi.org/10.1039/DOMA00955E
  38. Akbari A., Chamack M., Omidkhah M. Reverse microemulsion synthesis of polyoxometalate-based heterogeneous hybrid catalysts for oxidative desulfurization // J. Mater. Sci. 2020. V. 55. № 15. P. 6513–6524. https://doi.org/10.1007/s10853-020-04458-0
  39. Khan Z., Ali S. Oxidative desulphurization followed by catalytic adsorption method // S. Afr. J. Chem. Eng. 2013. V. 18. № 2. P. 14–28. https://hdl.handle.net/10520/EJC151789
  40. Oyewem A., Abdulkareem A.S., Tijani J.O., Bankole M.T., Abubakre O.K., Afolabi A.S., Roos W.D. Controlled syntheses of multi-walled carbon nanotubes from bimetallic Fe–Co catalyst supported on kaolin by chemical vapour deposition method // Arab. J. Sci. Eng. 2019. V. 44. P. 5411–5432. https://doi.org/10.1007/s13369-018-03696-4
  41. Yu W., Porosoff M.D., Chen J.G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts // Chem. Rev. 2012. V. 112. № 11. P. 5780–5817. https://doi.org/10.1021/cr300096b
  42. Munnik P., de Jongh P.E., de Jong K.P. Recent developments in the synthesis of supported catalysts // Chem. Rev. 2015. V. 115. № 14. P. 6687–6718. https://doi.org/10.1021/cr500486u
  43. Pérez-Pastenes H., Núñez-Correa S., Pérez-López G., Ricardez-Sandoval L., Viveros-García T. 2-Propanol dehydration and dehydrogenation on Pt/Al2O3 and Pt/Al2O3-CeO2 catalysts // Revista Mexicana de Ingeniería Química. 2021. V. 20. № 2. P. 1047–1058. https://doi.org/10.24275/rmiq/Cat2360
  44. Yang J., Zuo T., Lu J. Effect of preparation methods on the hydrocracking performance of NiMo/Al2O3 catalysts // Chin. J. Chem. Eng. 2021. V. 32. P. 224–230. https://doi.org/10.1016/j.cjche.2020.06.009
  45. Hu Y., Zhang J., Huo H., Wang Z., Xu X., Yang Y., Lin K., Fan R. One-pot synthesis of bimetallic metal–organic frameworks (MOFs) as acid–base bifunctional catalysts for tandem reaction // Catal. Sci. Technol. 2020. V. 10. № 2. P. 315–322. https://doi.org/10.1039/C9CY01940E
  46. Nasresfahani Z., Kassaee M.Z. Nickel‒copper bimetallic mesoporous nanoparticles: as an efficient heterogeneous catalyst for N‐alkylation of amines with alcohols // Appl. Organomet. Chem. 2021. V. 35 № 1. ID e6032. https://doi.org/10.1002/aoc.6032
  47. Rex A., dos Santos J.H.Z. The use of sol–gel processes in the development of supported catalysts // J. Sol–Gel Sci. Technol. 2023. V. 105. № 1. P. 30–49. https://doi.org/10.1007/s10971-022-05975-x
  48. Zhang J., Chen T., Jiao Y., Cheng M., Wang L.-L., Wang J.-L., Li X.-Y., Chen Y.-Q. Improved activity of Ni–Mo/SiO2 bimetallic catalyst synthesized via sol–gel method for methylcyclohexane cracking // Petrol. Sci. 2021. V. 18. № 5. P. 1530–1542. https://doi.org/10.1016/j.petsci.2021.08.009
  49. Dongare S., Singh N., Bhunia H., Bajpai P.K. Electrochemical reduction of CO2 using oxide based Cu and Zn bimetallic catalyst // Electrochim. Acta. 2021. V. 392. ID138988. https://doi.org/10.1016/j.electacta.2021.138988
  50. Rudresha K., Zahir Hussain A., Ravikumar C.R., Anil Kumar M.R. Bimetallic CuO–ZnO hybrid nanocomposite materials for efficient remediation of environmental pollutants // ChemistrySelect. 2023. V. 8. № 29. ID e202300583. https://doi.org/10.1002/slct.202300583
  51. Брыжин А.А., Руднев В.С., Лукиянчук И.В., Василева М.С., Тарханова И.Г. Влияние состава оксидных слоев, полученных методом плазменно-электролитического оксидирования, на механизм пероксидного окисления сераорганических соединений // Кинетика и катализ. 2020. Т. 61. № 2. C. 262–270. https://doi.org/10.31857/S0453881120020021
  52. Брыжин А.А., Тарханова И.Г., Маслаков К.И., Николаев С.А., Гуревич С.А., Кожевин В.М., Явсин Д.А., Гантман М.Г., Ростовщикова Т.Н. Наноструктурированные NiMo- и NiW-катализаторы окисления тиофена, полученные методом лазерного электродиспергирования // Журн. физ. химии. 2019. Т. 93. № 10. C. 1575–1583. https://doi.org/10.1134/S0044453719100029
  53. Guan S., Yu R., Guo F., Fang Y., Ji L. Facile synthesis of ultra-fine nanoporous Pt co-catalyst decorated on P25 and its highly efficient photocatalytic activity // Ionics. 2021. V. 27. P. 1633–1643. https://doi.org/10.1007/s11581-021-03958-6
  54. Lu J. A perspective on new opportunities in atom-by-atom synthesis of heterogeneous catalysts using atomic layer deposition // Catal. Lett. 2021. V. 151. P. 1535–1545. https://doi.org/10.1007/s10562-020-03412-8
  55. Zhang J., Zheng X., Yu W., Feng X., Qin Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane // Appl. Catal. B: Environ. 2022. V. 306. ID121116. https://doi.org/10.1016/j.apcatb.2022.121116
  56. Labbe M., Clark M.P., Cadien K., Ivey D.G. Bifunctional Mn‐Fe Oxide Catalysts for Zn‐Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition // Batter. Supercaps. 2024. V. 7. № 9. ID e202400133. https://doi.org/10.1002/batt.202400133
  57. Srivastava V.C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels // RSC Adv. 2012. V. 2. № 3. P. 759–783. https://doi.org/10.1039/C1RA00309G
  58. Zhang X., Zhang Z., Zhang B., Yang X., Chang X., Zhou Z., Wang D.H., Zhang M.H., Bu X.H. Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization // Appl. Catal. B: Environ. 2019. V. 256. ID117804. https://doi.org/10.1016/j.apcatb.2019.117804
  59. Akopyan A.V., Kulikov L.A., Polikarpova P.D., Shlenova A.O., Anisimov A.V., Maximov A.L., Karakhanov E.A. Metal-free oxidative desulfurization catalysts based on porous aromatic frameworks // Ind. Eng. Chem. Res. 2021. V. 60. № 25. P. 9049–9058. https://doi.org/10.1021/acs.iecr.1c00886
  60. Tang W., Yao Y., Huang X. Hydrogen-assisted thermocatalysis over Titanium Nanotube for oxidative desulfurization // Catalysts. 2021. V. 12. № 1. ID29. https://doi.org/10.3390/catal12010029
  61. Bai J., Song Y., Wang C., Chen H., Wei D., Bai L., Wang W., Yang L., Liang Y., Yang H. Engineering the electronic structure of Mo sites in Mn–Mo–O-mixed-metal oxides for efficient aerobic oxidative desulfurization // Energy Fuels. 2021. V. 35. № 15. P. 12310–12318. https://doi.org/10.1021/acs.energyfuels.1c01476
  62. Elwan H.A., Zaky M.T., Farag A.S., Soliman F.S., Hassan M.E.D. Efficient pyridinium-based ionic liquid for deep oxidative desulfurization of model oil // J. Mol. Liq. 2020. V. 310. ID113146. https://doi.org/10.1016/j.molliq.2020.113146
  63. Liu Z., Zhang Y., Bai J., Yang H., Yang L., Bai L., Wei D., Wang W., Liang Y., Chen H. MoOx nanoclusters decorated on spinel-type transition metal oxide porous nanosheets for aerobic oxidative desulfurization of fuels // Fuel. 2023. V. 334. Pt. 2. ID126753. https://doi.org/10.1016/j.fuel.2022.126753
  64. Jiang W., Gao X., Dong L., Xiao J., Zhu L.H., Chen G.Y., Xun S.H., Peng C., Zhu W.S., Li H.M. Aerobic oxidative desulfurization via magnetic mesoporous silica-supported tungsten oxide catalysts // Pet. Sci. 2020. V. 17. P. 1422–1431. https://doi.org/10.1007/s12182-020-00498-y
  65. Chen L., Yuan Z.Y. Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel // J. Ind. Eng. Chem. 2022. V. 108. P. 1–14. https://doi.org/10.1016/j.jiec.2021.12.025
  66. García-Gutiérrez J.L., Fuentes G.A., Hernández-Terán M.E., Murrieta F., Navarrete J., Jiménez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al₂O₃ // Appl. Catal. A: Gen. 2006. V. 305. № 1. P. 15–20. https://doi.org/10.1016/j.apcata.2006.01.027
  67. Yang F., Wang R., Zhou S., Wang X., Kong Y., Gao S. Mesopore-encaged V–Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfurization // Chin. J. Chem. Eng. 2022. V. 45. P. 182–193. https://doi.org/10.1016/j.cjche.2021.05.015
  68. Nevanperä T.K., Ojala S., Laitinen T., Pitkäaho S., Saukko S., Keiski R.L. Catalytic oxidation of dimethyl disulfide over bimetallic Cu–Au- and Pt–Au-catalysts supported on Al2O3, CeO2 and CeO2Al2O3 // Catalysis. 2019. V. 9. № 7. ID603. https://doi.org/10.3390/catal9070603
  69. Liu S., Zhao F., Sun H., Liu X., Cui B. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization // Appl. Organomet. Chem. 2017. V. 32. № 2. ID e4082. https://doi.org/10.1002/aoc.4082
  70. Aslam S., Subhan F., Yan Z., Yaseen M. Facile fabrication of confined spaces with molybdenum atoms for fast oxidative desulfurization of fuel oil // Sep. Purif. Technol. 2024. V. 344. P. 127301. https://doi.org/10.1016/j.seppur.2024.127301
  71. Haghighi M., Gooneh-Farahani S. Oxidative desulfurization of dibenzothiophenes over metallic and bimetallic supported ZSM-11 catalysts: xLa/yMo-ZSM-11 as an efficient bimetallic catalyst // Inorg. Chem. Commun. 2019. V. 106. P. 61–69. https://doi.org/10.1016/j.inoche.2019.05.007
  72. Jamali N., Ramezani N., Mousazadeh M.H. Modified mesoporous HMS supported V/W for oxidative desulfurization of dibenzothiophene // Phys. Chem. Res. 2021. V. 9. № 4. P. 637–649. https://doi.org/10.22036/pcr.2021.276639.1898
  73. Wan Abu Bakar W.A., Ali R., Kadir A.A.A., Mokhtar W.N.A.W. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel // Fuel Process. Technol. 2012. V. 101. P. 78–84. https://doi.org/10.1016/j.fuproc.2012.04.004
  74. Alvarez-Amparán M.A., Cedeno-Caero L. MoOxVOx based catalysts for the oxidative desulfurization of refractory compounds: Influence of MoOxVOx interaction on the catalytic performance // Catal. Today. 2017. V. 282. Pt. 2. P. 133–139. https://doi.org/10.1016/j.cattod.2016.07.002
  75. Zhang Q., Zhang J., Yang H., Dong Y., Liu Y., Yang L., Wei D., Wang W., Bai L., Chen H. Efficient aerobic oxidative desulfurization over Co–Mo–O bimetallic oxide catalysts // Catal. Sci. Technol. 2019. V. 9. № 11. P. 2915–2922. https://doi.org/10.1039/C9CY00459A
  76. Ramos J.M., Wang J.A., Chen L.F., Arellano U., Ramírez S.P., Sotelo R., Schachat P. Synthesis and catalytic evaluation of CoMo/SBA-15 catalysts for oxidative removal of dibenzothiophene from a model diesel // Catal. Commun. 2015. V. 72. P. 57–62. https://doi.org/10.1016/j.catcom.2015.09.007
  77. Yan X.M., Mei Z., Mei P., Yang Q. Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil // J. Porous Mater. 2014. V. 21. P. 729–737. https://doi.org/10.1007/s10934-014-9819-2
  78. Chen L., Ren J.T., Yuan Z.Y. Increasing the utilization of SiBeta support to anchor dual active sites of transition metal and heteropolyacids for efficient oxidative desulfurization of fuel // Appl. Catal. B: Environ. 2022. V. 305. ID121044. https://doi.org/10.1016/j.apcatb.2021.121044
  79. Eseva E., Dunko A., Latypova S., Grafov O., Cherednichenko K., Motyakin M.V., Anisimov A., Akopyan A. Cobalt-manganese spinel structure catalysts for aerobic oxidative desulfurization // Fuel. 2024. V. 357. ID129689. https://doi.org/10.1016/j.fuel.2023.129.689
  80. Jiabao B., Ya S., Chenxu W., Hou Ch., Donglei W., Liangjiu B., Wenxiang W., Lixia Y., Ying L., Huawei Y. Engineering the electronic structure of Mo sites in Mn–Mo–O mixed-metal oxides for efficient aerobic oxidative desulfurization // Energy Fuels. 2021. V. 35. № 15. Р. 12310–12318. https://doi.org/10.1021/acs.energyfuels.1c01476
  81. Naseri H., Mazloom G., Akbari A., Banisharif F. Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene // Microporous Mesoporous Mater. 2021. V. 325. ID111341. https://doi.org/10.1016/j.micromeso.2021.111341
  82. Mohammadil Z., Najafi Chermahini A., Kasiri Baboukani Z. Oxidative desulfurization of real and model fuel using vanadium-chromium bimetallic catalysts supported on KIT-6 // Res. Chem. Intermed. 2024. V. 50. P. 597–624. https://doi.org/10.1007/s11164-023-05211-3
  83. Li X., Shi J., Wang J., Xi L., Sun R., Zhang F., Wu X., Zhou Z., Ren Z. Preparation of CeVO4/BNNS catalyst and its application in oxidation desulfurization of diesel oil // Fuel. 2023. V. 337. ID126875. https://doi.org/10.1016/j.fuel.2022.126875
  84. Guo H., Lu X., Zhang W., Zhang M., Zhao L., Shou D., Xia Q. Highly efficient oxidation of various thioethers with molecular oxygen catalyzed by bimetallic SnMo-MOF // Mol. Catal. 2024. V. 569. ID114555. https://doi.org/10.1016/j.mcat.2024.114555
  85. Zhu Z., Ma H., Liao W., Tang P., Yang K., Su T., Ren W., Lü H. Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization // Appl. Catal. B: Environ. 2021. V. 288. ID120022. https://doi.org/10.1016/j.apcatb.2021.120022
  86. Li Y., Zhang W., Zhang L., Yang Q., Wei Z., Feng Z., Li C. Direct synthesis of Al–SBA-15 mesoporous materials via hydrolysis-controlled approach // J. Phys. Chem. B. 2004. V. 108. № 28. P. 9739–9744. https://doi.org/10.1021/jp.049824j
  87. Chandra Mouli K., Soni K., Dalai A., Adjaye J. Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil // Appl. Catal. A: Gen. 2011. V. 404. № 1‒2. P. 21–29. https://doi.org/10.1016/j.apcata.2011.07.001
  88. Gajardo J., Colmenares-Zerpa J., Peixoto A.F., Silva D.S.A., Silva J.A., Gispert-Guirado F., Chimentão R.J. Revealing the effects of high Al loading incorporation in the SBA-15 silica mesoporous material // J. Porous Mater. 2023. V. 30. № 5. P. 1687–1707. https://doi.org/10.1007/s10934-023-01453-z
  89. Ashirov R., Kimball M.R., O'Brien M., Bhuvanesh N., Blümel J. Aluminum trichloride adducts of phosphine oxides: Structures, Solid-State NMR, and application // Inorg. Chim. Acta. 2024. V. 564. ID121952. https://doi.org/10.1016/j.ica.2024.121952
  90. Pham X.N., Nguyen M.B., Doan H.V. Direct synthesis of highly ordered Ti-containing Al–SBA-15 mesostructured catalysts from natural halloysite and its photocatalytic activity for oxidative desulfurization of dibenzothiophene // Adv. Powder Technol. 2020. V. 31. № 8. P. 3351–3360. https://doi.org/10.1016/j.apt.2020.06028
  91. Rivoira L.P., Valles V.A., Martínez M.L., Sa-Ngasaeng Y., Jongpatiwut S., Beltramone A.R. Catalytic oxidation of sulfur compounds over Ce–SBA-15 and Ce–Zr–SBA-15 // Catal. Today. 2021. V. 360. P. 116–128. https://doi.org/10.1016/j.cattod.2019.08.005
  92. Ramos J.M., Wang J.A., Flores S.O., Chen L.F., Nava N., Navarrete J., Domínguez J.M., Szpunar J.A. Ultrasound-assisted synthesis and catalytic activity of mesostructured FeOx/SBA-15 and FeOx/Zr–SBA-15 catalysts for the oxidative desulfurization of model diesel // Catal. Today. 2020. V. 349. P. 198–209. https://doi.org/10.1016/j.cattod.2018.04.059
  93. Ramos J.M., Wang J.A., Flores S.O., Chen L., Arellano U., Noreña L.E., González J., Navarrete J. Ultrasound-assisted hydrothermal synthesis of V2O5/Zr–SBA-15 catalysts for production of ultralow sulfur fuel // Catalysts. 2021. V. 11. № 4. ID408. https://doi.org/10.3390/catal11040408
  94. Rivoira L., Martínez M.L., Anunziata O., Beltramone A. Vanadium oxide supported on mesoporous SBA-15 modified with Al and Ga as a highly active catalyst in the ODS of DBT // Microporous Mesoporous Mater. 2017. V. 254. P. 96–113. https://doi.org/10.1016/j.micromeso.2017.04.019
  95. Zhang X., Zhu Y., Huang P., Zhu M. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization // RSC Adv. 2016. V. 6. № 73. P. 69357–69364. https://doi.org/10.1039/C6RA16622A
  96. Yuzbashi S., Mousazadeh M.H., Ramezani N., Sid Kalal H., Sabour B. Mesoporous zirconium–silica nanocomposite modified with heteropoly tungstophosphoric acid catalyst for ultra-deep oxidative desulfurization // Appl. Organomet. Chem. 2020. V. 34. № 2. ID e5326. https://doi.org/10.1002/aoc.5326
  97. Naseri H., Mazloom G., Akbari A., Banisharif F. Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene // Microporous Mesoporous Mater. 2021. V. 325. ID111341. https://doi.org/10.1016/j.micromeso.2021.111341
  98. Гуль О.О., Поликарпова П.Д., Акопян А.В., Анисимов А.В. Биметаллические гетерогенные катализаторы для окисления серосодержащих соединений пероксидом водорода // Кинетика и катализ. 2023. T. 64. № 5. С. 609–617. https://doi.org/10.31857/S0453881123050039 [Gul O.O., Polikarpova P.D., Akopyan A.V., Anisimov A.V. Bimetallic heterogeneous catalysts for the oxidation of sulfur-containing compounds with hydrogen peroxide // Kinet. Catal. 2023. V. 64. № 5. P. 627–634. https://doi.org/10.1134/S0023158423050038]
  99. Гуль О.О., Домашкина П.Д., Акопян А.В., Сенявин В.М., Анисимов А.В. Катализаторы на основе оксида вольфрама и Al–SBA-15 для окисления сернистых соединений нефтяного происхождения / Нефтехимия. 2024. Т. 64. № 2. С. 163–174. https://doi.org/10.31857/S0028242124020055
  100. Akopyan A., Polikarpova P., Gul O., Anisimov A., Karakhanov E. Catalysts based on acidic SBA-15 for deep oxidative desulfurization of model fuels // Energy Fuels. 2020. V. 34. № 11. P. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008
  101. Lima T.M., de Macedo V., Silva D.S.A., Castelblanco W.N., Pereira C.A., Roncolatto R.E., Gawande M.B., Zbořil R., Varma R.S., Urquieta-González E.A., Urquieta-González E.A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation // Appl. Catal. B: Environ. 2020. V. 277. ID119248. https://doi.org/10.1016/j.apcatb.2020.119248
  102. Todorova S., Kolev H., Karakirova Y., Filkova D., Grahovski B., Aleksieva K., Holgado J.P., Kadinov G., Caballero A. Preferential CO oxidation in hydrogen-rich gases over Ag catalysts supported on different supports // Reac. Kinet. Mech. Catal. 2022. V. 135. № 3. P. 1405–1422. https://doi.org/10.1007/s11144-022-02158-1
  103. Okutan C., Arbag H., Yasyerli N., Yasyerli S. Catalytic activity of SBA-15 supported Ni catalyst in CH4 dry reforming: effect of Al, Zr, and Ti co-impregnation and Al incorporation to SBA-15 // Int. J. Hydrog. Energy. 2020. V. 45. № 27. P. 13911–13928. https://doi.org/10.1016/j.ijhydene.2020.03.052
  104. Wan Z., Xu X., Li C., Zhang J., Wang Q., Fang L., Zhang L., Guo Q., Sun D. Simultaneous oxidation and absorption of nitric oxide and sulfur dioxide by peroxomonosulfate activated by bimetallic metal-organic frameworks // J. Environ. Chem. Eng. 2023. V. 11. № 2. ID109417 https://doi.org/10.1016/j.jece.2023.109417
  105. Алимарданов Х.М., Мусаева Э.С., Гарибов Н.И., Дадашова Н.Р. Окисление пироконденсата и некоторых его непредельных компонентов пероксидом водорода в присутствии полиоксовольфрамата, модифицированного катионами церия // Нефтехимия. 2024. T. 64. № 1. C. 55–63. https://doi.org/10.31857/S0028242124010042
  106. Khalaf Y.H., Sherhan B.Y., Shakor Z.M., Al-Sheikh F. Биметаллические катализаторы изомеризации алканов (обзор) // Современные молекулярные сита. 2023. Т. 5. № 2. С. 134–149. https://doi.org/10.53392/27130304_2023_5_2_134 [Khalaf Y.H., Sherhan B.Y., Shakor Z.M., Al-Sheikh F. Bimetallic catalysts for isomerization of alkanes (A Review) // Petrol. Chem. 2023. V. 63. № 7. P. 829–843. https://doi.org/10.1134/S0965544123050079]
  107. Zhou J., Zhao J., Zhang J., Zhang T., Ye M., Liu Z. Regeneration of catalysts deactivated by coke deposition: A review // Chin. J. Catal. 2020. V. 41. № 7. P. 1048–1061. https://doi.org/10.1016/S1872-2067(20)63552-5
  108. Zhao J., Huffman G.P., Davis B.H. XAFS study of the state of platinum in a sulfated zirconia catalyst // Catal. Lett. 1994. V. 24. P. 385–389.
  109. Blomsma, E., Martens, I., Jacobs, P.A. Isomerization and hydrocracking of heptane over bimetallic bifunctional PtPd/H-beta and PtPd/USY zeolite catalysts // J. Catal. 1997. V. 165, № 2. P. 241–248. https://doi.org/10.1016/jcat.1997.1473
  110. Corma A., Navas J., Sabater M.J. Advances in one-pot synthesis through borrowing hydrogen catalysis // Chem. Rev. 2018. V. 118. № 4. P. 1410–1459. https://doi.org/10.1021/acs.chemrev.7b00340
  111. Tomer A., Yan Z., Ponchel A., Pera-Titus M. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia // J. Catal. 2017. V. 356. P. 133–146. https://doi.org/10.1016/j.jcat.2017.08.015
  112. Ruiz D., Aho A., Mäki-Arvela P., Kumar N., Oliva H., Murzin D.Y. Direct amination of dodecanol over noble and transition metal supported silica catalysts // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 12878–12887. https://doi.org/10.1021/acs.iecr.7b03580
  113. Tomer A., Kusema B.T., Paul J.F., Przybylski C., Monflier E., Pera-Titus M., Ponchel A. Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols // J. Catal. 2018. V. 368. P. 172–189. https://doi.org/10.1016/j.jcat.2018.10.002
  114. Liu L., Corma A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles // Chem. Rev. 2023. V. 123. № 8. P. 4855–4933. https://doi.org/10.1021/acs.chemrev.2c00733
  115. Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F., Hullfish C.W., Lebron E.A., Dumesic J.A. AgPd and CuPd catalysts for selective hydrogenation of acetylene // ACS Catal. 2020. V. 10. № 15. P. 8567–8581. https://doi.org/10.1021/acscatal.0c01536
  116. Sanchis I., Diaz E., Pizarro A.H., Rodriguez J.J., Mohedano A.F. Nitrate reduction with bimetallic catalysts. A stability-addressed overview // Sep. Purif. Technol. 2022. V. 290. ID120750. https://doi.org/10.1016/j.seppur.2022.120750
  117. Akti F., Balci S., Dogu T. Role of synthesis media on properties of tin and copper incorporated SBA-15 catalysts and their activity in selective oxidation of ethanol // Mater. Chem. Phys. 2019. V. 223. P. 249–259. https://doi.org/10.1016/j.matchemphys.2018.10.068
  118. Lee J.S., Han G.B., Kang M. Low-temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts // Energy. 2012. V. 44. № 1. P. 248–256. https://doi.org/10.1016/j.energy.2012.06.032
  119. Яшник С.А., Суровцева Т.А., Ищенко А.В., Каичев В.В., Исмагилов З.Р. Структура и свойства модифицированных платиной Pd–Mn-гексаалюминатных катализаторов высокотемпературного окисления метана // Кинетикa и катализ. 2016. T. 57. № 4. C. 535–547. https://doi.org/10.7868/S0453881116040171

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Proposed mechanism of dibenzothiophene oxidation in the presence of Fe–V–HMS catalyst and tert-butyl hydroperoxide oxidizer (based on [69]).

Baixar (164KB)
3. Fig. 2. Mechanism of oxidation of sulfur compounds in the presence of a bifunctional catalyst WO3/MoO3/Al2O3 (based on materials from [73]).

Baixar (96KB)
4. Fig. 3. Proposed mechanism of oxygen activation and sulfide oxidation (based on materials from [75]).

Baixar (98KB)
5. Fig. 4. Proposed mechanism of DBT oxidation in the presence of Al–Ti-SBA-15 catalyst (based on materials from [90]).

Baixar (253KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025