Микроводоросли эродированных почв северной части Ферганской долины, Узбекистан
- Авторы: Тухтабоева Ю.А.1, Кривина Е.С.2, Редькина В.В.2, Темралеева А.Д.2
-
Учреждения:
- Наманганский государственный университет
- ФИЦ "Пущинский научный центр биологических исследований РАН"
- Выпуск: Том 93, № 4 (2024)
- Страницы: 397-413
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://kazanmedjournal.ru/0026-3656/article/view/655088
- DOI: https://doi.org/10.31857/S0026365624040024
- ID: 655088
Цитировать
Аннотация
Впервые изучено культивируемое разнообразие микроводорослей эродированных почв северной части Ферганской долины (Узбекистан) на основе морфологического и молекулярно-генетического анализов. Было обнаружено 10 штаммов зеленых микроводорослей (Chlorophyta) и 1 – харофитовых (Charophyta). Только 7 штаммов микроводорослей было определено до вида: Chlorella vulgaris, Chromochloris zofingiensis, Deuterostichococcus epilithicus, Pseudomuriella schumacherensis и Pseudostichococcus monallantoides. Еще 4 штамма идентифицированы только до рода и нуждаются в дальнейших исследованиях: Bracteacoccus sp., Chlorosarcinopsis sp., Klebsormidium sp. и Tetratostichococcus sp. Невысокое видовое разнообразие микроводорослей можно объяснить как эродированностью и малоплодородностью почв на склонах, так и особенностями культурального подхода, выявляющего только часть от реального разнообразия микроорганизмов. Колонизировать эродированные почвы в условиях засушливой предгорной зоны микроводоросли могут с помощью различных адаптаций: мелкие клеточные размеры, продукция внеклеточных экзополисахаридов, микоспорин-подобные аминокислоты и вторичные каротиноиды. Проведенное исследование может стать основой для дальнейшей разработки высокофункциональных консорциумов на основе микроводорослей с целью улучшения и устойчивого развития низкопродуктивных, засушливых, деградированных наземных экосистем.
Ключевые слова
Полный текст

Об авторах
Ю. А. Тухтабоева
Наманганский государственный университет
Email: temraleeva.anna@gmail.com
Узбекистан, Наманган
Е. С. Кривина
ФИЦ "Пущинский научный центр биологических исследований РАН"
Email: temraleeva.anna@gmail.com
Всероссийская коллекция микроорганизмов (ВКМ), Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН
Россия, ПущиноВ. В. Редькина
ФИЦ "Пущинский научный центр биологических исследований РАН"
Email: temraleeva.anna@gmail.com
Всероссийская коллекция микроорганизмов (ВКМ), Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН
Россия, ПущиноА. Д. Темралеева
ФИЦ "Пущинский научный центр биологических исследований РАН"
Автор, ответственный за переписку.
Email: temraleeva.anna@gmail.com
Всероссийская коллекция микроорганизмов (ВКМ), Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН
Россия, ПущиноСписок литературы
- Андреева В. М. Почвенные и аэрофильные зеленые водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). СПб.: Наука, 1998. 351 с.
- Бут И. П. Почвенные водоросли некоторые районов Сурхандарийской области // Узбекский биологические журнал. 1959. № 2. С. 26–38.
- Дубовик И. Е. Влияние овражной эрозии на развитие водорослей в лесостепных почвах Предуралья // Почвоведение. 2004. № 4. С. 474–479.
- Dubovik I. E. The effect of gully erosion on the diversity of algae in forest-steppe soils of the cis-Ural region // Euras. Soil Sci. 2004. V. 37. P. 409‒414.
- Дубовик И. Е. Водоросли эродированных почв и альгологическая оценка почвозащитных мероприятий. Уфа: Изд-во Башкирского ун-та, 1995. 154 с.
- Киселев Е. И. Материалы к изучению микрофлоры рисовых полей окрестностей г. Самарканда // Журнал Русского ботанического общества. 1931. Т. 6. № 4. C. 20–22.
- Музафаров А. М. Флора водорослей водоемов Средней Азии. Ташкент: Изд-во “Наука” Узбекской ССР, 1965. 569 с.
- Мусаев К. Ю. Водоросли орошаемых земель и их значение для плодородия почв. Ташкент: Изд-во Академии Наук Узбекской ССР, 1960. 211 c.
- Мухамедиев А. М. Материалы к гидробиологии рисовых полей Ферганской долины // Ученые записки Ферган. пед. института. Сер. Биол. 1960. № 6. C. 3–75.
- Темралеева А. Д., Минчева Е. В., Букин Ю. С., Андреева А. М. Современные методы выделения, культивирования и идентификации зеленых водорослей (Chlorophyta). Кострома: Костромской печатный дом, 2014. 215 с.
- Троицкая Е. К. Водоросли основных почв юго-Западных Кызылкумов. Автореф. дис. … канд. биол. наук. Ташкент, 1961. 19 с.
- Тухтабоева Ю. А., Редькина В. В., Темралеева А. Д. Stichococcus-подобные микроводоросли (Trebouxiophyceae, Chlorophyta) в эродированных почвах Ферганской долины // Узбекский биологический журнал. 2023. № 4 (в печати).
- Умарова Ш. У. Водоросли хлопковых полей и влияние некоторых агротехнических факторов на развитие и распространение. Автореф. дис. … канд. биол. наук. Ташкент, 1964. 25 с.
- ФАО ООН. Европейская комиссия по сельскому хозяйству. 2015 // Продовольственная и сельскохозяйственная организация ООН. URL: https://www.fao.org/3/mo297r/mo297r.pdf (дата обращения: 24.11.2023).
- Büdel B., Darienko T., Deutschewitz K., Dojani S., Friedl T., Mohr K. I., Salisch M., Reisser W., Weber B. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency // Microb. Ecol. 2009. V. 57. P. 229–247. https://doi.org/10.1007/s00248-008-9449-9
- Caisová L., Marin B., Melkonian M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction // Protist. 2013. V. 164. P. 482–496. https://doi.org/10.1016/j.protis.2013.04.005
- Cardon Z. G., Gray D. W., Lewis L. A. The green algal underground: evolutionary secrets of desert cells // BioScience. 2008. V. 58. P. 114–122. https://doi.org/10.1641/B580206
- Castillo-Monroy A., Maestre F., Delgado-Baquerizo M., Gallardo A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland // Plant Soil. 2010. V. 333. P. 21–34. https://doi.org/10.1007/s11104-009-0276-7
- Chekanov K. Diversity and distribution of carotenogenic algae in Europe: a review // Mar. Drugs. 2023. V. 21. Art. 108. https://doi.org/10.3390/md21020108
- Coleman A. W. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide // Mol. Phylogenet. Evol. 2009. V. 50. P. 197–203. https://doi.org/10.1016/j.ympev.2008.10.008
- Costa O. Y.A., Raaijmakers J. M., Kuramae E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation // Front. Microbiol. 2018. V. 9. Art. 1636. https://doi.org/10.3389/fmicb.2018.01636
- Ettl H., Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer, 1995. 721 p.
- Evans R. D., Johansen J. R. Microbiotic crusts and ecosystem processes // Crit. Rev. Plant Sci. 1999. V. 18. P. 183–225. https://doi.org/10.1080/07352689991309199
- Fischer T., Subbotina M. Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis // Biologia (Bratisl.). 2014. V. 69. P. 1520–1530. https://doi.org/10.2478/s11756-014-0464-7
- Fucíková K., Lewis L. A. Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta) // Fottea. 2012. V. 12. P. 83–93. https://doi.org/10.5507/fot.2012.007
- Fucíková K., Rada J. C., Lewis L. A. The tangled taxonomic history of Dictyococcus, Bracteacoccus and Pseudomuriella Chlorophyceae, Chlorophyta) and their distinction based on a phylogenetic perspective // Phycologia. 2011. V. 50. № 4. P. 422‒429. https://doi.org/10.2216/10-69.1
- Glaser K., Baumann K., Leinweber P., Mikhailyuk T. Karsten U. Algal richness in BSCs in forests under different management intensity with some implications for P cycling // Biogeosciences. 2018. V. 15. P. 4181–4192. https://doi.org/10.5194/bg-15-4181-2018
- Guiry M. D., Guiry G. M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, 2023. http://www.algaebase.org
- Hartmann A., Glaser K., Holzinger A., Ganzera M., Karsten U. Klebsormidin A and B, two new UV-sunscreen compounds in green microalgal Interfilum and Klebsormidium species (Streptophyta) from terrestrial habitats // Front. Microbiol. 2020 V. 11. Art. 499. https://doi.org/10.3389/fmicb.2020.00499
- Holzinger A., Kaplan F., Blaas K., Zechmann B., Komsic-Buchmann K., Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction // PLoS One. 2014. V. 9. Art. e110630. https://doi.org/10.1371/journal.pone.0110630
- Johnson J. L., Fawley M. W., Fawley K. P. The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasa State Park, Minnesota, USA // Phycologia. 2007. V. 46. P. 214–229. https://doi.org/10.2216/05-69.1
- Karsten U., Friedl T., Schumann R., Hoyer K., Lembcke S. Mycosporine‐like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta) // J. Phycol. 2005. V. 41. P. 557‒566. https://doi.org/10.1111/j.1529-8817.2005.00081.x
- Karsten U., Herburger K., Holzinger A. Living in biological soil crust communities of African deserts ‒ Physiological 20 traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients // J. Plant Physiol. 2016. V. 194. P. 2–12. https://doi.org/10.1016/j.jplph.2015.09.002
- Kitzing C., Pröschold T., Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts // Microb. Ecol. 2014. V. 67. P. 327‒340. https://doi.org/10.1007/s00248-013-0317-x
- Krivina E. S., Bobrovnikova L. A., Temraleeva A. D., Markelova A. G., Gabrielyan D. A., Sinetova M. A. Description of Neochlorella semenenkoi gen. et sp. nov. (Chlorophyta, Trrebouxiophyceae), a novel Chlorella-like alga with high biotechnological potential // Diversity. 2023. V. 15. Art. 513. P. 1‒22. https://doi.org/10.3390/d15040513
- Langhans T. M., Storm C., Schwabe A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques // Microb. Ecol. 2009. V. 58. P. 394–407. https://doi.org/10.1007/s00248-009-9532-x
- Lu Q., Xiao Y., Lu Y. Employment of algae-based biological soil crust to control desertification for the sustainable development: a mini-review // Algal Res. 2022. V. 65. Art. 102747. https://doi.org/10.1016/j.algal.2022.102747
- Lukešová A. Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany) // Restor. Ecol. 2001. V. 9. P. 341–350. https://doi.org/10.1046/j.1526-100X.2001.94002.x
- Mamasoliev S. T. Soil algae of urban ecosystems (on the example of Andijan). Avtoreferat dis. Namangan, 2019. 25 p.
- McManus H.A., Lewis L. A. Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediatrum duplex // J. Phycol. 2011. V. 47. P. 152–163. https://doi.org/10.1111/j.1529-8817.2010.00940.x
- Metting B. The systematics and ecology of soil algae // Bot. Rev. 1981. V. 47. P. 195–312. https://doi.org/10.1007/BF02868854
- Mikhailyuk T., Glaser K., Holzinger A., Karsten U., Gabrielson P. Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy) // J. Phycol. 2015. V. 51. P. 750–767. https://doi.org/10.1111/jpy.12316
- Mikhailyuk T., Glaser K., Tsarenko P., Demchenko E., Karsten U. Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria // Eur. J. Phycol. 2019. V. 54. P. 263–290. https://doi.org/10.1080/09670262.2018.1557257
- Moewus L. Systematische Bestimmung einzelliger grüner Algen auf Grund von Kulturversuchen (Sphaerosorus composita, Oocystis marina und Pseudostichococcus monallantoides) // Botaniska Notiser. 1951. P. 287–318.
- Neustupa J., Eliás M., Sejnohová L. A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid // Nova Hedwigia. 2007. V. 84. P. 51–63. https://doi.org/10.1127/0029-5035/2007/0084-005
- Perera I., Subashchandrabose S. R., Venkateswarlu K., Naidu R., Megharaj M. Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 7351–7363. https://doi.org/10.1007/s00253-018-9192-1
- Pluis J. L.A. Algal crust formation in the inland dune area, Laarder Wasmeer, the Netherlands // Vegetatio. 1994. V. 113. P. 41–51. https://doi.org/10.1007/BF00045462
- Pröschold T., Darienko T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus // Phytotaxa. 2020. V. 441. P. 113–142. https://doi.org/10.11646/phytotaxa.441.2.2
- Rabiei A., Zomorodian S. M.A., O’Kelly B. C. Reducing the erodibility of sandy soils engineered by cyanobacteria inoculation: a laboratory investigation // Sustainability. 2023. V. 15. Art. 3811. https://doi.org/10.3390/su15043811
- Rindi F., Mikhailyuk T. I., Sluiman H. J., Friedl T., López-Bautista J. M. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta) // Mol. Phylogenet. Evol. 2011. V. 58. P. 218–231. https://doi.org/10.1016/j.ympev.2010.11.030
- Rippin M., Borchhardt N., Williams L., Colesie C., Jung P., Büdel B., Karsten U., Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches // Polar Biol. 2018. V. 41. P. 909–923. https://doi.org/10.1007/s00300-018-2252-2
- Rybalka N., Blanke M., Tzvetkova A., Noll A., Roos C., Boy J., Boy D., Nimptsch D., Godoy R., Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island) // Front. Microbiol. 2023. V. 14. Art. 118747. https://doi.org/10.3389/fmicb.2023.1118747
- Samolov E., Mikhailyuk Y., Lukešová A., Glaser K. Büdel B., Karsten U. Usual alga from unusual habitats: biodiversity of Klebsormidium (Klebsormidiophyceae, Streptophyta) from the phylogenetic superclade G isolated from biological soil crusts // Mol. Phyl. Evol. 2019. V. 133. P. 236–255. https://doi.org/10.1016/j.ympev.2018.12.018
- Seitz S., Nebel M., Goebes P., Käppeler K., Schmidt K., Shi X., Song Z., Webber C. L., Weber B., Scholten T. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest // Biogeosci. 2017. V. 14. P. 5775–5788. https://doi.org/10.5194/bg-14-5775-2017
- Sommer V., Karsten U., Glaser K. Halophilic algal communities in biological soil crusts isolated from potash tailings pile areas // Front. Ecol. Evol. 2020. V. 8. Art. 46. https://doi.org/10.3389/fevo.2020.00046
- Van A. T., Glaser K. Pseudostichococcus stands out from its siblings due to high salinity and desiccation tolerance // Phycology. 2022. V. 2. P. 108–119. https://doi.org/10.3390/phycology2010007
- Xiao R., Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications // Biotechnol. Adv. 2016. V. 34. P. 1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004
Дополнительные файлы
