Control of self-organization of thiacalix[4]crown-ethers in cone and 1,3-alternate forms in nanofilms on quartz substrate
- Authors: Chetinel I.D.1, Botnar A.A.1, Novikov A.S.1, Muraveva E.A.1, Ireddy A.T.1, Zun P.S.1, Solovieva S.E.2, Antipin I.S.2, Skorb E.V.1, Muravev A.A.1,2
-
Affiliations:
- Научно-образовательный центр инфохимии, Университет ИТМО
- Институт органической и физической химии, ФИЦ КазНЦ РАН
- Issue: Vol 87, No 2 (2025)
- Pages: 149-160
- Section: Articles
- Submitted: 06.07.2025
- Accepted: 06.07.2025
- Published: 06.07.2025
- URL: https://kazanmedjournal.ru/0023-2912/article/view/686810
- DOI: https://doi.org/10.31857/S0023291225020076
- EDN: https://elibrary.ru/toqlun
- ID: 686810
Cite item
Abstract
Morphological characteristics of the nanolayers of amphiphilic tert-butylthiacalix[4]crown-4-ether in cone stereoisomeric form 1 and bolaamphiphilic nitrothiacalix[4]biscrown-5-ether in 1,3-alternate form 2 deposited onto quartz substrate at varying solvent, temperature, and concentration of compounds is analyzed. Quantum-chemical calculations of the considered calix[4]arenes reveal a favorable micellar aggregation (the packing factor p < 0.3). During AFM visualization of calixarene nanolayers prepared through evaporation of solvent on substrate, spherical associates that are 200–800 nm in size are detected for compound 1, which enlarge with a decrease in the concentration of compound and an increase in solvent polarity and environmental temperature. At the same time, the dispersity of the sizes of associates increases with a decrease in temperature, but has a mixed dependence on solvent and concentration. The most uniform size distribution of spherical particles is achieved upon Langmuir monolayer formation at the air–water interface upon deposition of the solution of compound 1 in 10–5 M solution in chloroform onto water subphase and upon vertical transfer onto substrate. In the case of bolaamphiphile 2, spherical associates are formed at t = 23°C in 10–5 М solution in toluene and at 4°С in 10–4 М solution in chloroform, while under other combinations of conditions, the nanofilm is represented by thread-like structures (at 23°С) and tactoid aggregates (at 4°С). Dynamic light scattering study of the solutions of amphiphile 1 in chloroform allows to detect spherical aggregates (particle size is 202 ± 92 nm), which indicates the decisive role of solvent in the formation of spherical aggregates in nanolayers, while in other cases the supramolecular organization of calixarenes is presumably affected by the interaction with substrate.
Full Text

About the authors
I. D. Chetinel
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
A. A. Botnar
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
A. S. Novikov
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
E. A. Muraveva
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
A. T. S. Ireddy
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
P. S. Zun
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
S. E. Solovieva
Институт органической и физической химии, ФИЦ КазНЦ РАН
Email: muravev@itmo.ru
Russian Federation, Казань
I. S. Antipin
Институт органической и физической химии, ФИЦ КазНЦ РАН
Email: muravev@itmo.ru
Russian Federation, Казань
E. V. Skorb
Научно-образовательный центр инфохимии, Университет ИТМО
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург
A. A. Muravev
Научно-образовательный центр инфохимии, Университет ИТМО; Институт органической и физической химии, ФИЦ КазНЦ РАН
Author for correspondence.
Email: muravev@itmo.ru
Russian Federation, Санкт-Петербург; Казань
References
- Ovsyannikov A., Solovieva S., Antipin I., Ferlay S. Coordination polymers based on calixarene derivatives: structures and properties // Coord. Chem. Rev. 2017. V. 352. P. 151–186. https://doi.org/10.1016/j.ccr.2017.09.004
- Arnott G.E. Inherently chiral calixarenes: synthesis and applications // Chem. Eur. J. 2018. V. 24. P. 1744–1754. https://doi.org/10.1002/chem.201703367
- Dalcanale E., Pinalli R., Pedrini A. Environmental gas sensing with cavitands // Chem. Eur. J. 2018. V. 24. № 5. P. 1010–1019. https://doi.org/10.1002/chem.201703630
- Lou X.-Y., Li Y.-P., Yang Y.-W. Gated materials: installing macrocyclic arenes-based supramolecular nanovalves on porous nanomaterials for controlled cargo release // Biotechnol. J. 2019. V. 14. № 1. P. 1800354. https://doi.org/10.1002/biot.201800354
- Kim H.J., Lee M.H., Mutihac L., Vicens J., Kim, J.S. Host–guest sensing by calixarenes on the surfaces // Chem. Soc. Rev. 2012. V. 41. P. 1173–1190. https://doi.org/10.1039/C1CS15169J
- Csokai V., Grün A., Parlagh G., Bitter I. Synthesis and alkali cation extraction ability of 1,3-alt-thiacalix[4]mono(crown) ethers // Tetrahedron Lett. 2002. V. 43. № 42. P. 7627–7629. https://doi.org/10.1016/S0040-4039(02)01594-0
- Muravev A., Yakupov A., Gerasimova T., Nugmanov R., Trushina E., Babaeva O., Nizameeva G., Syakaev V., Katsyuba S., Selektor S., Solovieva S., Antipin I. Switching ion binding selectivity of thiacalix[4]arene monocrowns at liquid–liquid and 2D-confined interfaces // Int. J. Mol. Sci. 2021. V. 22. № 7. P. 3535. https://doi.org/10.3390/ijms22073535
- Tian H.-W., Liu Y.-C., Guo D.-S. Assembling features of calixarene-based amphiphiles and supra-amphiphiles // Mater. Chem. Front. 2020. V. 4. № 1. P. 46–98. https://doi.org/10.1039/c9qm00489k
- Muravev A.A., Solovieva S.E., Kochetkov E.N., Mel’nikova N.B., Safiullin R.A., Kadirov M.K., Latypov S.K., Antipin I.S., Konovalov A.I. Thiacalix[4]monocrowns substituted by sulfur-containing anchoring groups: new ligands for gold surface modification // Macroheterocycles. 2013. V. 6. № 4. P. 302–307. https://doi.org/10.6060/mhc131269m
- Li H., Chen Y., Tian D., Gao Z. The synthesis of novel polysiloxanes with pendant hand-basket type calix[6]crowns and their transporting properties for metal ions in a liquid membrane // J. Membrane Sci. 2008. V. 310. P. 431–437. https://doi.org/10.1016/j.memsci.2007.11.013
- Levitskaia T.G., Lamb J.D., Fox K.L., Moyer B.A. Selective carrier-mediated cesium transport through polymer inclusion membranes by calix[4]arene-crown-6 carriers from complex aqueous mixtures // Radiochim. Acta. 2002. V. 90. № 1. P. 43–52. https://doi.org/10.1524/ract.2002.90.1_2002.43
- Guan B., Jiang M., Yang X., Liang Q., Chen Y. Self-assembly of amphiphilic calix[6]crowns: from vesicles to nanotubes // Soft Matter. 2008. V. 4. № 7. P. 1393–1395. https://doi.org/10.1039/b805312j
- Dalgarno S.J., Hardie M.J., Warren J.E., Raston C.L. Lanthanide crown ether complexes of p-sulfonatocalix[5]arene // Dalton Trans. 2004. V. 33. № 16. P. 2413–2416. https://doi.org/10.1039/B407207C
- Zheng Q.-Y., Chen C.-F., Huang Z.-T. Synthesis of new chromogenic calix[4]crowns and molecular recognition of alkylamines // Tetrahedron. 1997. V. 53. № 30. P. 10345–10356. https://doi.org/10.1016/S0040-4020(97)00653-4
- van Leeuwen F.W.B., Beijleveld H., Kooijman H., Spek A.L., Verboom W., Reinhoudt D.N. Synthesis and conformational evaluation of p-tert-butylthiacalix[4]arene-crowns // J. Org. Chem. 2004. V. 69. № 11. P. 3928–3936. http://doi.org/10.1021/jo0401220
- Muravev A., Galieva F., Bazanova O., Sharafutdinova D., Solovieva S., Antipin I., Konovalov A. Thiacalix[4]monocrowns with terpyridine functional groups as new structural units for luminescent polynuclear lanthanide complexes // Supramol. Chem. 2016. V. 28. № 5–6. P. 589–600. https://doi.org/10.1080/10610278.2016.1150593
- Solovieva S.E., Murav’ev A.A., Latypov S.K., Antipin I., Konovalov A. Thiacalix-monocrown ethers with terminal functional groups at the lower rim: synthesis and structure // Dokl. Chem. 2016. V. 438. P. 170–174. https://doi.org/10.1134/S0012500811060061
- Csokai V., Grün A., Bitter I. Unprecedented cyclisations of calix[4]arenes with glycols under the Mitsunobu protocol. Part 1: A new perspective for the synthesis of calixcrowns // Tetrahedron Lett. 2003. V. 44. № 25. P. 4681–4684. https://doi.org/10.1016/S0040-4039(03)01077-3
- Muravev A., Gerasimova T., Fayzullin R., Babaeva O., Rizvanov I., Khamatgalimov A., Kadirov M., Katsyuba S., Litvinov I., Latypov S., Solovieva S., Antipin I. Thermally stable nitrothiacalixarene chromophores: Conformational study and aggregation behavior // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6916. https://doi.org/10.3390/ijms21186916
- Tirado-Rives J., Jorgensen W.L. Performance of B3LYP density functional methods for a large set of organic molecules // J. Chem. Theory Comput. 2008. V. 4. № 2. P. 297–306. https://doi.org/10.1021/ct700248k
- Grimme S. Density functional theory with London dispersion corrections // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011. V. 1. № 2. P. 211–228. https://doi.org/10.1002/wcms.30
- Neese F. The ORCA program system // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012. V. 2. № 1. P. 73–78. https://doi.org/10.1002/WCMS.81
- Neese F., Wenmohs F., Hansen A., Becker U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange // Chem. Phys. 2009. V. 356. № 1–3. P. 98–109. https://doi.org/10.1016/j.chemphys.2008.10.036
- Neese F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix // J. Comput. Chem. 2003. V. 24. № 14. P. 1740–1747. https://doi.org/10.1002/jcc.10318
- Pracht P., Grimme S., Bannwarth C., Bohle F., Ehlert S., Feldmann G., Gorges J., Müller M., Neudecker T., Plett C., Spicher S., Steinbach P., Wesołowski P.A., Zeller F. CREST—A program for the exploration of low-energy molecular chemical space // J. Chem. Phys. 2024. V. 160. № 11. P. 114110. https://doi.org/10.1063/5.0197592
- Bannwarth C., Ehlert S., Grimme S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions // J. Chem. Theory Comput. 2019. V. 15. № 3. P. 1652–1671. https://doi.org/10.1021/acs.jctc.8b01176
- Ehlert S., Stahn M., Spicher S., Grimme S. Robust and efficient implicit solvation model for fast semiempirical methods // J. Chem. Theory Comput. 2021. V. 17. № 7. P. 4250–4261. https://doi.org/10.1021/acs.jctc.1c00471
- Takano Y., Houk K.N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules // J. Chem. Theory Comput. 2005. V. 1. № 1. P. 70–77. https://doi.org/10.1021/ct049977a
- Parshad B., Prasad S., Bhatia S., Mittal A., Pan Y., Mishra P. K., Sharma S. K., Fruk L. Non-ionic small amphiphile based nanostructures for biomedical applications // RSC Adv. 2020. V. 10. № 69. P. 42098–42115. https://doi.org/10.1039/d0ra08092f
- Pisagatti I., Barbera L., Gattuso G., Patane S., Parisi M.F., Notti A. Novel PEGylated calix[5]arenes as carriers for RoseBengal // Supramol. Chem. 2018. V. 30. № 8. P. 658–663. https://doi.org/10.1080/10610278.2018.1455976
- Liu F., Wang Y., Lu G.Y. Bilayer vesicle formation in ethanol from calix[4]arene derivative with two guanidinium groups // Chem. Lett. 2005. V. 34. № 10. P. 1450–1451. https://doi.org/10.1246/cl.2005.1450
- Morozova Ju.E., Syakaev V.V., Kazakova E.Kh., Shalaeva Ya.V., Nizameev I.R., Kadirov M.K., Voloshina A.D., Zobova V.V., Konovalova A.I. Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates // Soft Matter. 2016. V. 12. № 25. P. 5590–5599. https://doi.org/10.1039/C6SM00719H
- Botnar A.A., Novikov O.P., Korepanov O.A., Muraveva E.A., Kozodaev D.A., Novikov A.S., Nosonovsky M., Skorb E.V., Muravev A.A. Crystallization control of anionic thiacalixarenes on silicon surface coated with cationic poly(ethyleneimine) // Langmuir. 2024. V. 40. № 46. P. 24634–24643. https://doi.org/10.3390/ijms21186916
Supplementary files
