Uniformity of electron beam cross-linking of polyethylene depending on the distribution of the absorbed radiation dose
- 作者: Popova A.V.1, Artamonova K.A.1, Bludenko A.V.1, Kholodkova E.M.1, Vlasov S.I.1, Ponomarev A.V.1
-
隶属关系:
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS
- 期: 卷 59, 编号 4 (2025)
- 页面: 229–234
- 栏目: RADIATION CHEMISTRY
- URL: https://kazanmedjournal.ru/0023-1193/article/view/687705
- DOI: https://doi.org/10.31857/S0023119325040061
- EDN: https://elibrary.ru/ayadnq
- ID: 687705
如何引用文章
详细
The crosslinking of polyethylene of pipe grades via 900 keV electrons at an absorbed dose of 50 to 400 kGy in the presence of antioxidants and a crosslinking agent was studied. The degree of crosslinking of polyethylene was measured by the content of the gel fraction, determined by its extraction in xylene. It was shown that in all cases the 60% degree of cross-linking is achieved at a dose of about 100 kGy. It is advisable to combine the standard method for determining the gel fraction with visual inspection of samples to identify the conditions for the formation of an excessively low-melting material. It has been shown that ±7% crosslinking degree non-uniformity can be achieved with dose non-uniformity of up to ±50%.
全文:

作者简介
A. Popova
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
K. Artamonova
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
A. Bludenko
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
E. Kholodkova
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
S. Vlasov
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
A. Ponomarev
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
参考
- Burillo G., Clough R.L., Czvikovszky T., Guven O., Le Moel A., Liu W., Singh A., Yang J., Zaharescu T. // Radiat. Phys. Chem. 2002. V. 64. P. 41.
- Dorigato A. // Adv. Ind. Eng. Polym. Res. 2021. V. 4. P. 53.
- Geyer R., Jambeck J.R., Law K.L. // Sci. Adv. 2017. V. 3. P. e1700782.
- Chmielewski A.G. // Radiat. Phys. Chem., 2023. V. 213. P. 111233.
- Ponomarev A.V., Gohs U., Ratnam C.T., Horak C. // Radiat. Phys. Chem. 2022. V. 201. P. 110397.
- Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 194.
- Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. NY: Wiley, 1994.
- Pikaev A.K. // High Energy Chem. 2000. V. 34.
- Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
- Albrecht V., Simon F., Reinsch E., Schünemann R., Gohs U., Kretzschmar B., Peuker U.A. // Recover. Recycl. Technol. Worldw. 2016. V. 2. P. 36.
- Cleland M., Galloway R., Genin F., Lindholm M. // Radiat. Phys. Chem. 2002. V. 63. P. 729.
- Perrin C., Griseri V., Laurent C. // IEEE Trans. Dielectr. Electr. Insul. 2008. V. 15. P. 958.
补充文件
