On the Effect of Ionizing Radiation on a Fluorescent Dye in Solution, in Complex with DNA and in Its Cholesteric Liquid-Crystalline Dispersion
- Autores: Kolyvanova M.A.1,2, Klimovich M.A.2, Belousov A.V.1,2, Kuzmin V.A.2, Morozov V.N.2
-
Afiliações:
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Edição: Volume 59, Nº 5 (2025)
- Páginas: 322-335
- Seção: RADIATION CHEMISTRY
- URL: https://kazanmedjournal.ru/0023-1193/article/view/690717
- DOI: https://doi.org/10.31857/S0023119325050044
- EDN: https://elibrary.ru/bktibf
- ID: 690717
Citar
Texto integral



Resumo
Palavras-chave
Sobre autores
M. Kolyvanova
Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, 123098 Russia; Moscow, 119334 Russia
M. Klimovich
Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, 119334 Russia
A. Belousov
Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, 123098 Russia; Moscow, 119334 Russia
V. Kuzmin
Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, 119334 Russia
V. Morozov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: morozov.v.n@mail.ru
Moscow, 119334 Russia
Bibliografia
- Jordan K., Avvakumov N. // Phys. Med. Biol. 2009. V. 54. № 22. P. 6773. https://doi.org/10.1088/0031-9155/54/22/002
- Abd El-kareem M. S. M., Abdelhady A. M., Elmaghraby E. K. et al. // Radiat. Phys. Chem. 2025. V. 226. P. 112284. https://doi.org/10.1016/j.radphyschem.2024.112284
- El-Assy N. B., Ibrahim I. A., Abdel-Fattah A. T. et al. // J. Radioanal. Nucl. Chem. 1986. V. 97. P. 247. https://doi.org/10.1007/bf02035669
- Vysotskaya N. A., Bortun L. N., Ogurtsov N. A. et al. // Int. J. Radiat. Appl. Instrum. Part C. 1986. V. 28. № 5–6. P. 469. https://doi.org/10.1016/1359-0197(86)90171-2
- Gafar S. M., El-Kelany M. A., El-Shawadfy S. R. // J. Radiat. Res. Appl. Sci. 2018. V. 11. № 3. P. 190. https://doi.org/10.1016/j.jrras.2018.01.004
- Oberoi P. R., Fuke C. A., Maurya C. B. et al. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 466. P. 82. https://doi.org/10.1016/j.nimb.2020.01.019
- Kinashi K., Tsuchida H., Sakai W. et al. // ChemistryOpen. 2020. V. 9. № 5. P. 623. https://doi.org/10.1002/open.202000071
- Park M. A., Moore S. C., Limpa-Amara N. et al. // Nucl. Instrum. Methods Phys. Res. A. 2006. V. 569. № 2. P. 543. https://doi.org/10.1016/j.nima.2006.08.090
- Ergun E. // J. Fluoresc. 2021. V. 31. № 4. P. 941. https://doi.org/10.1007/s10895-021-02715-2
- Jiang L., Li W., Nie J. et al. // ACS Sens. 2021. V. 6. № 4. P. 1643. https://doi.org/10.1021/acssensors.1c00204
- Qin D., Han Y., Hu L. // J. Fluoresc. 2023. V. 33. № 5. P. 2015. https://doi.org/10.1007/s10895-023-03205-3
- Kolyvanova M. A., Klimovich M. A., Koshevaya E. D. et al. // Photonics. 2023. V. 10. № 6. P. 671. https://doi.org/10.3390/photonics10060671
- Choudhary M. K., Gorai S., Patro B. S. et al. // ChemPhotoChem. 2023. V. 8. № 2. P. e202300245. https://doi.org/10.1002/cptc.202300245
- Lifanovsky N. S., Yablontsev N. A., Belousov A. V. et al. // J. Fluoresc. 2024. In press. https://doi.org/10.1007/s10895-024-03934-z
- Lifanovsky N., Spector D., Egorov A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025. V. 326. P. 125227. https://doi.org/10.1016/j.saa.2024.125227
- Колыванова М. А., Лифановский Н. С., Никитин Е. А. и др. // Химия высоких энергий. 2024. Т. 58. № 2. P. 107. https://doi.org/10.31857/s0023119324020042
- de Groot F. M. H., Gottarelli G., Masiero S. et al. // Angew. Chem. Int. Ed. Engl. 1997. V. 36. № 9. P. 954. https://doi.org/10.1002/anie.199709541
- Obeidat M., McConnell K. A., Li X. et al. // Med. Phys. 2018. V. 45. № 7. P. 3460. https://doi.org/10.1002/mp.12956
- Li X., McConnell K. A., Che J. et al. // Radiat. Res. 2020. V. 194. № 2. P. 173. https://doi.org/10.1667/rr15500.1
- Ai Z., Wang L., Guo Q. et al. // Chem. Commun. 2021. V. 57. № 41. P. 5071. https://doi.org/10.1039/d1cc01851e
- Евдокимов Ю. М., Салянов В. И., Семенов С. В., Скуридин С. Г. Жидкокристаллические дисперсии и наноконструкции ДНК. М.: Радиотехника, 2008. 296 с.
- Kolyvanova M. A., Klimovich M. A., Shibaeva A. V. et al. // Liq. Cryst. 2022. V. 49. № 10. P. 1359. https://doi.org/10.1080/02678292.2022.2032854
- Kolyvanova M. A., Klimovich M. A., Belousov A. V. et al. // Photonics. 2022. V. 9. № 11. P. 787. https://doi.org/10.3390/photonics9110787
- Ouameur A. A., Tajmir-Riahi H. A. // J. Biol. Chem. 2004. V. 279. № 40. P. 42041. https://doi.org/10.1074/jbc.M406053200
- Zipper H., Brunner H., Bernhagen J. et al. // Nucleic Acids Res. 2004. V. 32. № 12. P. e103. https://doi.org/10.1093/nar/gnh101
- Morozov V. N., Klimovich M. A., Kostyukov A. A. et al. // J. Lumin. 2022. V. 252. P. 119381. https://doi.org/10.1016/j.jlumin.2022.119381
- Климович М. А., Колыванова М. А., Дементьева О. В. и др. // Коллоидный журнал. 2023. Т. 85. № 5. С. 583. https://doi.org/10.31857/s0023291223600542
- Armitage B. A. Cyanine dye–DNA interactions: intercalation, groove binding, and aggregation. In: Waring M. J., Chaires J. B. DNA Binders and related subjects. Springer, Berlin, 2005, pp. 55–76. https://doi.org/10.1007/b100442
- Dragan A. I., Pavlovic R., McGivney J. B. et al. // J. Fluoresc. 2012. V. 22. P. 1189. https://doi.org/10.1007/s10895-012-1059-8
- Cosa G., Focsaneanu K. S., McLean J. R. et al. // Photochem. Photobiol. 2001. V. 73. № 6. P. 585. https://doi.org/10.1562/0031-8655(2001)073<0585:ppofdd>2.0.co;2
- Saarnio V. K., Alaranta J. M., Lahtinen T. M. // J. Mater. Chem. B. 2021. V. 9. № 16. P. 3484. https://doi.org/10.1039/d1tb00312g
- Alaranta J. M., Truong K. N., Matus M. F. et al. // Dyes Pigm. 2023. V. 208. P. 110844. https://doi.org/10.1016/j.dyepig.2022.110844
- Miller S. E., Taillon-Miller P., Kwok P. Y. // Biotechniques. 1999. V. 27. № 1. P. 34. https://doi.org/10.2144/99271bm05
- Noble R. T., Fuhrman J. A. // Aquat. Microb. Ecol. 1998. V. 14. P. 113. https://doi.org/10.3354/ame014113
- Ririe K. M., Rasmussen R. P., Wittwer C. T. // Anal. Biochem. 1997. V. 245. № 2. P. 154. https://doi.org/10.1006/abio.1996.9916
- Marie D., Partensky F., Jacquet S. et al. // Appl. Environ. Microbiol. 1997. V. 63. № 1. P. 186. https://doi.org/10.1128/aem.63.1.186-193.1997
- Кудряшов Ю. Б. Радиационная биофизика (ионизирующие излучения). М.: ФИЗМАТЛИТ, 2004. 448 с.
- Clark G. L., Bierstedt Jr. P. E. // Radiat. Res. 1955. V. 2. № 3. P. 199. https://doi.org/10.2307/3570248
- El-Assy N. B., El-Wakeel E. I., Abdel Fattah A. A. // Int. J. Rad. Appl. Instrum. A. 1991. V. 42. № 1. P. 89. https://doi.org/10.1016/0883-2889(91)90129-o
- Chen Y. P., Liu S. Y., Yu H. Q. et al. // Chemosphere. 2008. V. 72. № 4. P. 532. https://doi.org/10.1016/j.chemosphere.2008.03.054
- Teif V. B., Bohinc K. // Prog. Biophys. Mol. Biol. 2011. V. 105. № 3. P. 208. https://doi.org/10.1016/j.pbiomolbio.2010.07.002
- Tankovskaia S. A., Kotb O. M., Dommes O. A. et al. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. V. 200. P. 85. https://doi.org/10.1016/j.saa.2018.04.011
- Beshir W. B., Eid S., Gafar S. M. et al. // Appl. Radiat. Isot. 2014. V. 89. P. 13. https://doi.org/10.1016/j.apradiso.2013.11.030
- Denison L., Haigh A., D’Cunha G. et al. // Int. J. Radiat. Biol. 1992. V. 61. № 1. P. 69. https://doi.org/10.1080/09553009214550641
- Begusová M., Spotheim-Maurizot M., Michalik V. et al. // Int. J. Radiat. Biol. 2000. V. 76. № 1. P. 1. https://doi.org/10.1080/095530000138952
- Eberhardt M. K., Colina R. // J. Org. Chem. 1988. V. 53. № 5. P. 1071. https://doi.org/10.1021/jo00240a025
- Babbs C. F., Griffin D. W. // Free Radic. Biol. Med. 1989. V. 6. № 5. P. 493. https://doi.org/10.1016/0891-5849(89)90042-7
- Baldock D., Nebe-von-Caron G., Bongaerts R. et al. // Methods Appl. Fluoresc. 2013. V. 1. № 4. P. 045001. https://doi.org/10.1088/2050-6120/1/4/045001
- Jordan C. F., Lerman L. S., Venable J. H. // Nat. New Biol. 1972. V. 236. № 64. P. 67. https://doi.org/10.1038/newbio236067a0
- Евдокимов Ю. М., Скуридин С. Г., Салянов В. И. и др. // Биофизика. 2015. Т. 60. № 5. С. 861.
- Ellestad G. A. Drug and natural product binding to nucleic acids analyzed by electronic circular dichroism. In: Berova N., Polavarapu P. L., Nakanishi K., Woody R. W. Comprehensive chiroptical spectroscopy: applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules. Volume 2. John Wiley & Sons, Inc., New Jersey, 2012, pp. 635–664. https://doi.org/10.1002/9781118120392.ch20
- Иванов А. А., Салянов В. И., Стрельцов С. А. и др. // Биоорганическая химия. 2011. Т. 37. № 4. С. 530.
- Коваль В. С., Иванов А. А., Салянов В. И. и др. // Биоорганическая химия. 2017. Т. 43. № 2. С. 167. https://doi.org/10.7868/s0132342317020105
- Koval V. S., Arutyunyan A. F., Salyanov V. I. et al. // Bioorg. Med. Chem. 2020. V. 28. № 7. P. 115378. https://doi.org/10.1016/j.bmc.2020.115378
- Морозов В. Н., Климович М. А., Колыванова М. А. и др. // Химия высоких энергий. 2021. Т. 55. № 5. С. 339. https://doi.org/10.31857/s0023119321050089
- Morozov V. N., Klimovich M. A., Shibaeva A. V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 14. P. 11365. https://doi.org/10.3390/ijms241411365
- Колыванова М. А., Климович М. А., Шишмакова Е. М. и др. // Коллоидный журнал. 2024. Т. 86. № 3. С. 344. https://doi.org/10.31857/s0023291224030049
- Колыванова М. А., Белоусов А. В., Кузьмин В. А. и др. // Химия высоких энергий. 2022. Т. 56. № 5. С. 416. https://doi.org/10.31857/s0023119322050072
- Morozov V. N., Kolyvanova M. A., Dement’eva O. V. et al. // J. Lumin. 2020. V. 219. P. 116898. https://doi.org/10.1016/j.jlumin.2019.116898
- Keller D., Bustamante C. // J. Chem. Phys. 1986. V. 84. № 6. P. 2972. https://doi.org/10.1063/1.450278
- Barzda V., Mustárdy L., Garab G. // Biochemistry. 1994. V. 33. № 35. P. 10837. https://doi.org/10.1021/bi00201a034
- Yevdokimov Y. M., Skuridin S. G., Semenov S. V. et al. // J. Biol. Phys. 2017. V. 43. № 1. P. 45. https://doi.org/10.1007/s10867-016-9433-4
- Hur J. H., Lee A. R., Yoo W. et al. // FEBS Lett. 2019. V. 593. № 18. P. 2628. https://doi.org/10.1002/1873-3468.13513
- Alexander P., Charlesby A. // J. Polym. Sci. 1957. V. 23. № 103. P. 355. https://doi.org/10.1002/pol.1957.1202310331
- Sakurada I., Ikad Y. // Bull. Inst. Chem. Res., Kyoto Univ. 1963. V. 41. № 1. P. 103.
- Wang B., Kodama M., Mukataka S. et al. // Polym. Gels Networks. 1998. V. 6. № 1. P. 71. https://doi.org/10.1016/s0966-7822(98)00003-3
- Sidorova N. Y., Rau D. C. // Biopolymers. 1995. V. 35. № 4. P. 377. https://doi.org/10.1002/bip.360350405
- Qu X., Chaires J. B. // J. Am. Chem. Soc. 2001. V. 123. № 1. P. 1. https://doi.org/10.1021/ja002793v
- Degtyareva N. N., Wallace B. D., Bryant A. R. et al. // Biophys. J. 2007. V. 92. № 3. P. 959. https://doi.org/10.1529/biophysj.106.097451
- Yu H., Ren J., Chaires J. B. et al. // J. Med. Chem. 2008. V. 51. № 19. P. 5909. https://doi.org/10.1021/jm800826y
- Timasheff S. N. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. № 13. P. 7363. https://doi.org/10.1073/pnas.95.13.7363
Arquivos suplementares
