Mechanism of fulvic acid decay under the influence of microwave radiation: results of quantum chemical calculations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The primary products of fulvic acid thermolysis under microwave irradiation were studied using DFT quantumchemistry methods with BP86 and B3LYP potentials. The method of relaxation scanning of the most importantprocess paths leading to the rupture of peripheral C–H, C–O and C–C bonds and the formation of atomichydrogen, HO· and ·CO2H radicals was used. Secondary processes lead to the formation of molecular hydrogen,water, and carbon dioxide, respectively.

Sobre autores

S. Ananicheva

Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)

Russia, Nizhny Novgorod

E. Gerasimova

N.I. Lobachevsky State University of Nizhny Novgorod (UNN); Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)

Russia, Nizhny Novgorod; Russia, Nizhny Novgorod

S. Zelentsov

N.I. Lobachevsky State University of Nizhny Novgorod (UNN); Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)

Email: zelentsov@chem.unn.ru
Russia, Nizhny Novgorod; Russia, Nizhny Novgorod

N. Peskov

N.I. Lobachevsky State University of Nizhny Novgorod (UNN); Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)

Russia, Nizhny Novgorod; Russia, Nizhny Novgorod

M. Glyavin

Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)

Russia, Nizhny Novgorod

Bibliografia

  1. Wu D., Lu Y., Ma L. и др. // Molecules. 2023. V. 28. № 19. P. 6780.
  2. Konnova M. A., Volkov A. A., Kostryukov S. G. и др. // Saudi J. Med. Pharm. Sci. 2023. V. 9. № 9. P. 617–628.
  3. Zhang A., Zhang Y. J., Zheng H. L., Ma L. L. и др. // Int. J. Oil Gas and Coal Technol. 2018. V. 18. № 1/2. P. 146.
  4. Zhang Y., Gong G., Zheng H. и др. // ACS Omega. 2020. № 5. P. 6389–6394.
  5. Kappe C. O. // Acc. Chem. Res. 2013. V. 46. № 7. P. 1579–1587.
  6. Kappe C. O. // Chimia. 2006. 60 (6), 308–312.
  7. Yu S., Vermeeren P., Hamlin T. A. и др. // Chemistry – Eur. J. 2021. V. 27. № 18. P. 5683–569.
  8. Bofll J. M.,Quapp W., Albareda G и др. // Theor. Chem. Acc. 2023. № 142. P. 22.
  9. Bofill J. M., Quapp W., Albareda G. и др. // J. Chem. Theory and Comput. 2022. V. 18. № 2. P. 935–952.
  10. Зеленцова Н. В., Зеленцов С. В. и др. // ВМС.А. 2004. Т. 46. № 8. С. 1–4.
  11. Romarıs-Hortas V., Moreda-Pineiro A., Bermejo-Barrera P. // Anal. Chim. Acta 2007. V. 602. №2. P. 202–210.
  12. Lu X. Q., Vassallo A. M., Johnson W. D. // J. Anal. Appl. Pyrolysis 1997. V. 43. № 2 P. 103–113.
  13. Schnitzer M., H. Kodama. // Geoderma 1972, V. 7. № 1–2. P. 93–103.
  14. https://pubchem.ncbi.nlm.nih.gov/compound/Fulvic-acid.
  15. Poshelyuzhnaya M. A., Litvin V. A., Galagan R. L. и др. // Rus. J. Gen. Chem. 2014. № 84. P. 848–852.
  16. Fizer M., Sidey V., Milyovich S. и др. // J. Mol. Graph. Model. 2021. № 102. P. 107800.
  17. John P. C. St., Guan Y., Kim Y. и др. // Nature Commun. 2020. № 11. P. 2328.
  18. Menon A., Pascazio L., Nurkowski D. и др. // ACS Omega. 2023. V. 8. № 2. P. 2462–2475; https://doi.org/10.1021/acsomega.2c06948
  19. Becke A. D. // Phys. Rev. A, 1988. V. 38. №6. P. 3098–3100.
  20. Perdew J. P. // Phys. Rev. B1986. V. 33. №12. P. 8822–8824.
  21. Perdew J. P. // Phys. Rev. B1986. V. 34. № 10. P. 7406.
  22. Самуилов А. Я., Шишкина Н. Н., и др. // Вестник Казанского технологического университета. 2014. Т. 17. № 3. С 7–9.
  23. Neese F. // Rev.: Comput. Mol. Sci. 2017. V. 8. P. e1327.
  24. SciPy documentation https://docs.scipy.org/doc/
  25. Taufiq-Yap Y.H., Sivasangar S., Surahim M. // Bioenerg. Res. 2019. № 12. P. 1066–1076.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025